
TheSoutheastern Pennsylvania Transportation Authority (SEPTA) operates a25-hertz traction power system in the vicinity ofPhiladelphia. The system, which SEPTA inherited from theReading Company, is similar to but electrically separate fromthe 25-hertz system built by thePennsylvania Railroad (PRR) and now operated byAmtrak. SEPTA's trains can run over both because the voltage and frequency presented to the locomotive are essentially identical.
SEPTA owns all of the former Reading substations. It also owns several substations that are electrically part of Amtrak's 25-Hz system, including former PRR substations along theMedia/Wawa Line and theChestnut Hill West Line, and a newer substation just north of30th Street Station.

TheReading Company electrified its lines betweenReading Terminal inPhiladelphia, Pennsylvania, andNorristown,Doylestown,Chestnut Hill,Hatboro andWest Trenton in 1931. The electrification was extended to include theFox Chase Line in September 1966. Electrification was again extended fromHatboro toWarminster in the early 1970s.[1][page needed]
The Reading's system used catenary electrified at12 kV 25 Hz like the competingPennsylvania Railroad's 1915 initial electrification and 1930s mainline expansion. Unlike the PRR's system, which included multiple power sources and an extensive high-voltage transmission network, the Reading's electrification was supplied solely by the rotary converter station atWayne Junction. Although ownership and operation of the system has changed, the system has remained essentially unchanged with the exception of the replacement of the rotary converter station at Wayne Junction with a solid-statecycloconverter in 1986.
The Reading electrification system was designed for suburbanMU operations and did not have to support the main line passenger or through freight operations of the rivalPennsylvania Railroad. While a complex system of high-voltage transmission lines was not necessary, the system was large enough to require the use of distribution feeders from the25 Hz power supply at Wayne Junction. The feeders were set at24 kV, double the traction voltage. Most of the rail lines would carry one or two feeders attached to the top of the catenary support masts. These24 kV substation feeders can be distinguished from12 kV traction feeders by the use of four-segment insulators as opposed to three-segment ones.

The24 kV lines feed a network of 11 substations (12 including the Wayne Junction switchyard) located every 8 to 10 miles (13 to 16 km) along the electrified rail lines. Most branches are short enough to only require a single substation near the end of the line, but the Main and West Trenton lines are long enough to require intermediate substations. At each substation the24 kV feeders are fed throughautotransformers to be reduced to the traction voltage of12 kV, which is then passed through circuit breakers before being fed into the overhead catenary wires.
Power is transmitted, effectively, at36 kV because the24 kV and12 kV components are 180° out of phase. This design has several advantages over the PRR's more traditional transmission and distribution scheme. The highest voltage, with respect to ground, within the system is24 kV. This is significantly less than the 69 kV seen in the PRR's system, which required much larger 80 feet (24 m) towers and larger insulators and transformers. On a small system such as the Reading's, transmission infrastructure of this scale was unnecessary. Secondly, the system uses the12 kV catenary wire for both transmission and distribution. This dual use of the catenary wire allows performing both functions with only two wires. The PRR's system in contrast required three wires: two for the single phase138 kV transmission component and one for the12 kV catenary feeder. In both systems, the rail is used as a return path for traction current.

All25 Hz power on the ex-Reading system is generated at theWayne Junction static converter plant. This plant was built between 1985 and 1990 and consists of three15 MVA solid-state,cycloconverter-based modules. The system was built by ASEA and is similar technically to the converter later installed at Amtrak'sJericho Park converter.
The inverters replaced two ca. 1928 Westinghouse Electric motor generators that were each rated at21.4 MVA. The capability also formerly existed to supply power fromPECO Energy's Somerset Substation, which had threemotor-generators normally used to supply the Pennsylvania Railroad's electrification system. This capability has been removed, as have the Somerset motor-generators. The ex-Reading system now operates completely independently from Amtrak's power system.
Wayne Junction receives230 kV 60 Hz power from two redundant lines that connect to PECO substations at Waneeta, Tabor and Pulaski. Two60 MVA 230/13.2 kV transformers reduce voltage for the static frequency converters. Cross-ties allow removing portions of the supply system from service for maintenance.
In March 2015 a contract worth $4,656,321 was awarded toSTV Incorporated, for the provision of architectural and engineering services for the rehabilitation of static frequency converters at Wayne Junction, with services to be performed over a period of 60 months scheduled to commence in April 2015 (per Proposal No. 14-233-JHC).[3]
25 Hz Power Supplies on the ex-Reading System | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Legend | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Each of the formerReading Railroad substations was equipped with transformers and circuit breakers fromAmerican Brown Boveri. Most transformers are rated to supply about2 MVA of power each (a few4 MVA transformers exist). Each substation also contained a number of oil-filled circuit breakers to disconnect both the12 kV and24 kV lines under load. The larger substations also have a small equipment and maintenance building to house any control equipment or secondary transformers for generating the100 Hz signal power.
Due to the robustness and simplicity of the components, until 2010 all the SEPTA substations were equipped with their original equipment, then approaching 80 years in service.
Callowhill substation was the first targeted for replacement, to eliminate the need to maintain the overhead wires over the abandonedReading Viaduct rail line as feeders to the active tracks. Its replacement, Fairmount substation, was commissioned in the 3rd quarter of 2010,[4] featuring two12/24 kV 25 Hz, single-phase5 MVA autotransformers as well as trolley breakers and other switchgear.[5]
Norristown substation received new transformers, trolley breakers, feeders, substation switchgear, protective relaying and a structural overhaul in astimulus project.[6]
In July 2012, the US Department of Transportation awarded SEPTA a $12.8 million Tiger IV grant to help refurbish Wayne Junction Substation.[7] In the words of SEPTA General Manager Joseph M. Casey, "We intend to use these resources to replace equipment that should be on display in a museum of transit history."
The grant was announced at ceremony at the substation which was attended by Transportation SecretaryRay LaHood, who said "It's not the sexiest, it's not the prettiest, but it's one of the most important projects."[8]
Renewal of Wayne Junction's three static frequency converters is expected to occur during the 2010s, in three stages in order to maintain redundancy. A fourth converter is to be added for system security.[9][S 1]
In October 2014 SEPTA requested interested contractors to submit bids for the rehabilitation of the static frequency converters at Wayne Junction.[10]
In September 2014 SEPTA requested interested contractors to submit bids for the rehabilitation of Ambler substation.[11] In October 2014 SEPTA awarded a $7.99 million contract to Carr & Duff, Inc.[12] for the work.[13]
On October 31, 2016, one of the substation's two main transformers burned out, and was replaced ahead of schedule a week later with one of the new transformers already on hand for the substation renewals at both Lansdale and Ambler.[14]
In the 1990s a fire at the Doylestown substation rendered it inoperable. Until the substation was repaired in 2013, the Doylestown Branch east of Lansdale had to be powered exclusively from the Lansdale substation. This "single-end feeding" of a 10-mile (16 km) section of track limited the number of MUs that could run simultaneously on the branch and also limited their maximum speed and acceleration.
The substation received a new 12/24 kV autotransformer in April 2015.[15]
With the passage of a source of dedicated transportation funding by the Commonwealth of Pennsylvania, SEPTA announced in December 2013 a capital budget plan that includes renewal or replacement of all remaining former Reading substations, in five phases. The first phase involves replacement of Jenkintown substation and the renewal of Ambler substation's active components, projects for which final design had been completed by the end of 2013.[9][16]
In November 2014 SEPTA requested interested contractors to submit bids for the rehabilitation of four substations (Lansdale, Bethayres, Chestnut Hill East and Hatboro).[17] The engineering design work is expected to take two years, and the construction a further three years.
SEPTA also plans to build a new substation nearWoodbourne station by Fall 2020, as the distance between Neshaminy Falls and Yardley substations is nearly twice the optimal 5-mile (8.0 km) distance between substations on a 12 kV 25 Hz system.[S 2]