Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

SEDSAT-1

From Wikipedia, the free encyclopedia
American amateur radio satellite
SEDSAT-1
SEDSAT-1 satellite.
Mission typeCommunications
OperatorAMSAT
COSPAR ID1998-061BEdit this at Wikidata
SATCATno.25509
Spacecraft properties
ManufacturerUniversity of Alabama
Launch mass35 kg (77 lb)
Dimensions32.13 cm × 32.13 cm × 35.43 cm (12.65 in × 12.65 in × 13.95 in)[1]
Start of mission
Launch date24 October 1998, 12:08 UTC
RocketDelta-7326 D-261
Launch siteCape CanaveralSLC-17A
Orbital parameters
Reference systemGeocentric
RegimeLow Earth
Eccentricity0.03699
Perigee altitude547 kilometres (340 mi)
Apogee altitude1,079 kilometres (670 mi)
Inclination31.4°
Period101 minutes
Epoch24 October 1998[2]

SEDSAT-1 (also known asSEDSAT-OSCAR 33) is a U.S.amateur radiosatellite built by students and developed at theUniversity of Alabama in Huntsville (UAH).

Themicrosatellite bears the name of one of its sponsoring organizations, theStudents for the Exploration and Development of Space (SEDS). It was launched into a low Earth orbit on October 24, 1998 as aSecondary payload with theDeep Space 1 spacecraft using aDelta II rocket atCape Canaveral Air Force Station,Florida, USA.

History

[edit]

The satellite was to be built by the partnership betweenNASA'sMarshall Space Flight Center and UAH with the primary objective of testing a newly developed small expendable deployer system developed for NASA'sSpace Shuttle, while allowing the students to add instrumentation to complete secondary missions after the primary data regarding the deployer's tether system had been captured.[3] After theTethered Satellite System (TSS-1R) experienced a failure resulting in the ignition of a strong electrical discharge shortly after being deployed from theSpace Shuttle Columbia in 1996, the small expendable deployer system was subject to aSpace Shuttle safety review that resulted in extensive design and requirements changes.[4] As a result, SEDSAT-1 became a free-flying secondary payload on the Delta II, after securing sponsorship from other governmental and commercial partners.[5]

Mission

[edit]

The satellite was intended to have a novel link to the internet that would allow amateur radio operators from around the globe to request and receive imagery from the satellite anytime it flew overhead.[6] To this end, the satellite carries two cameras as part of theSEASIS (SEDS, earth, atmosphere, and space imaging system) instrument.[7] SEDSAT-1 also includes instruments which monitor battery performance management and control. After launch, telemetry data was received at the satellite's university led mission control center at theUniversity of Arizona in Tucson, AZ. However, anuplink could never be established and no photographic data could be received from the SEASIS instrument. The telemetry data received from the satellite did allow for some of the battery control experiments to be received, and as of 2013 the satellite is still active.[8]

Frequency

[edit]

See also

[edit]

Bibliography

[edit]
  • Mark W. Maier, Shi-Tsan Wu: SEDSAT-1 lessons learned. In: F.-B. Hsiao (Hrsg.):Microsatellites as research tools. Elsevier,Amsterdam 1999, pg. 365–375.
  • Students for the Exploration and Development of Space Satellite. In:NASA Historical Data Book, Volume VII. Government Printing Office,Washington, D.C. 2009, pg. 669–671

References

[edit]
  1. ^Gunter Dirk Krebs."SEDSat 1 (SO 33, SEDSat-OSCAR 33)".Gunter's Space Page. Retrieved10 February 2020.
  2. ^NASA GSFC."Telemetry Details".NSSDCA Master Catalog. Retrieved10 February 2020.
  3. ^COSPAR Colloquium on Microsatellites as Research Tools (Tʻai-nan shih, Taiwan) (1997). Auteur. (2014).Microsatellites as research tools proceedings of COSPAR Colloquium on Microsatellites as Research Tools held in Tainan, Taiwan, 14-17 December 1997. Pergamon.ISBN 978-0-444-50196-7.OCLC 881679774.{{cite book}}: CS1 maint: numeric names: authors list (link)
  4. ^Stone, N. H.; Bonifazi, C. (1998)."The TSS-1R Mission: Overview and scientific context".Geophysical Research Letters.25 (4):409–412.Bibcode:1998GeoRL..25..409S.doi:10.1029/97GL02980.ISSN 1944-8007.S2CID 129860770.
  5. ^"Project Information Details".archive.seds.org. Retrieved2020-02-14.
  6. ^"SEDSAT Puts Students Over The Earth".www.spacedaily.com. Retrieved2020-02-18.
  7. ^Bankston, Cheryl Dawn (1994-06-08). Allahdadi, Firooz A.; Chrisp, Michael; Giuliano, Concetto R.; Latham, W. Pete; Shanley, James F. (eds.). "SEDS, earth, atmosphere, and space imaging system (SEASIS)".Space Instrumentation and Dual-Use Technologies.2214. International Society for Optics and Photonics:257–268.Bibcode:1994SPIE.2214..257B.doi:10.1117/12.177665.S2CID 140552198.
  8. ^"SEDSat 1 (SO 33, SEDSat-OSCAR 33)".space.skyrocket.de. Retrieved2020-02-18.
  9. ^"SEDSAT 1".N2yo.com. Retrieved10 February 2020.
Payloads are separated by bullets ( · ), launches by pipes ( | ). Crewed flights are indicated inunderline. Uncatalogued launch failures are listed initalics. Payloads deployed from other spacecraft are denoted in (brackets).
Satellites
Stub icon

This article about one or more spacecraft of the United States is astub. You can help Wikipedia byadding missing information.

Retrieved from "https://en.wikipedia.org/w/index.php?title=SEDSAT-1&oldid=1300243748"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp