Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Rydberg constant

From Wikipedia, the free encyclopedia

Physical constants of energy and wavenumber

Inspectroscopy, theRydberg constant, symbolR{\displaystyle R_{\infty }} for heavy atoms orRH{\displaystyle R_{\text{H}}} for hydrogen, named after the SwedishphysicistJohannes Rydberg, is aphysical constant relating to the electromagneticspectra of an atom. The constant first arose as an empirical fitting parameter in theRydberg formula for thehydrogen spectral series, butNiels Bohr later showed that its value could be calculated from more fundamental constants according to hismodel of the atom.

Before the2019 revision of the SI,R{\displaystyle R_{\infty }} and the electron sping-factor were the most accurately measuredphysical constants.[1]

The constant is expressed for either hydrogen asRH{\displaystyle R_{\text{H}}}, or at the limit of infinite nuclear mass asR{\displaystyle R_{\infty }}. In either case, the constant is used to express the limiting value of the highestwavenumber (inverse wavelength) of any photon that can be emitted from a hydrogen atom, or, alternatively, the wavenumber of the lowest-energy photon capable of ionizing a hydrogen atom from itsground state. Thehydrogen spectral series can be expressed simply in terms of the Rydberg constant for hydrogenRH{\displaystyle R_{\text{H}}} and theRydberg formula.

Inatomic physics,Rydberg unit of energy, symbol Ry, corresponds to the energy of the photon whose wavenumber is the Rydberg constant, i.e. the ionization energy of the hydrogen atom in a simplified Bohr model.[citation needed]

Value

[edit]

Rydberg constant

[edit]

TheCODATA value is

R=mee48ε02h3c={\displaystyle R_{\infty }={\frac {m_{\text{e}}e^{4}}{8\varepsilon _{0}^{2}h^{3}c}}=}10973731.568157(12) m−1,[2]

where

The symbol{\displaystyle \infty } means that the nucleus is assumed to be infinitely heavy, an improvement of the value can be made using thereduced mass of the atom:

μ=11me+1M{\displaystyle \mu ={\frac {1}{{\frac {1}{m_{\text{e}}}}+{\frac {1}{M}}}}}

withM{\displaystyle M} the mass of the nucleus. The corrected Rydberg constant is:

RM=μmeR{\displaystyle R_{\text{M}}={\frac {\mu }{m_{\text{e}}}}R_{\infty }}

that for hydrogen, whereM{\displaystyle M} is the massmp{\displaystyle m_{\text{p}}} of theproton, becomes:

RH=mpme+mpR1.09678×107 m1,{\displaystyle R_{\text{H}}={\frac {m_{\text{p}}}{m_{\text{e}}+m_{\text{p}}}}R_{\infty }\approx 1.09678\times 10^{7}{\text{ m}}^{-1},}

Since the Rydberg constant is related to the spectrum lines of the atom, this correction leads to anisotopic shift between different isotopes. For example, deuterium, an isotope of hydrogen with a nucleus formed by a proton and aneutron (M=mp+mn2mp{\displaystyle M=m_{\text{p}}+m_{\text{n}}\approx 2m_{\text{p}}}), was discovered thanks to its slightly shifted spectrum.[3]

Rydberg unit of energy

[edit]

The Rydberg unit of energy is

1 Ry  hcR=α2mec2/2{\displaystyle 1\ {\text{Ry}}~~\equiv hc\,R_{\infty }=\alpha ^{2}m_{\text{e}}c^{2}/2}
=2.1798723611030(24)×10−18 J[4]
=13.605693122990(15) eV[5]

Rydberg frequency

[edit]
cR{\displaystyle cR_{\infty }} =3.2898419602500(36)×1015 Hz.[6]

Rydberg wavelength

[edit]
1R=9.112670505826(10)×108 m{\displaystyle {\frac {1}{R_{\infty }}}=9.112\;670\;505\;826(10)\times 10^{-8}\ {\text{m}}}.

The correspondingangular wavelength is

12πR=1.45032655577(16)×108 m{\displaystyle {\frac {1}{2\pi R_{\infty }}}=1.450\;326\;555\;77(16)\times 10^{-8}\ {\text{m}}}.

Bohr model

[edit]
Main article:Bohr model

TheBohr model explains the atomicspectrum of hydrogen (seeHydrogen spectral series) as well as various other atoms and ions. It is not perfectly accurate, but is a remarkably good approximation in many cases, and historically played an important role in the development ofquantum mechanics. The Bohr model posits that electrons revolve around the atomic nucleus in a manner analogous to planets revolving around the Sun.

In the simplest version of the Bohr model, the mass of the atomic nucleus is considered to be infinite compared to the mass of the electron,[7] so that the center of mass of the system, thebarycenter, lies at the center of the nucleus. This infinite mass approximation is what is alluded to with the{\displaystyle \infty } subscript. The Bohr model then predicts that the wavelengths of hydrogen atomic transitions are (seeRydberg formula):

1λ=Ry1hc(1n121n22)=mee48ε02h3c(1n121n22){\displaystyle {\frac {1}{\lambda }}=\mathrm {Ry} \cdot {1 \over hc}\left({\frac {1}{n_{1}^{2}}}-{\frac {1}{n_{2}^{2}}}\right)={\frac {m_{\text{e}}e^{4}}{8\varepsilon _{0}^{2}h^{3}c}}\left({\frac {1}{n_{1}^{2}}}-{\frac {1}{n_{2}^{2}}}\right)}

wheren1 andn2 are any two different positive integers (1, 2, 3, ...), andλ{\displaystyle \lambda } is the wavelength (in vacuum) of the emitted or absorbed light, giving

1λ=RM(1n121n22){\displaystyle {\frac {1}{\lambda }}=R_{M}\left({\frac {1}{n_{1}^{2}}}-{\frac {1}{n_{2}^{2}}}\right)}

whereRM=R1+meM,{\displaystyle R_{M}={\frac {R_{\infty }}{1+{\frac {m_{\text{e}}}{M}}}},} andM is the total mass of the nucleus. This formula comes from substituting thereduced mass of the electron.

Precision measurement

[edit]
See also:Precision tests of QED

The Rydberg constant was one of the most precisely determined physical constants, with a relative standard uncertainty of1.1×10−12.[2] This precision constrains the values of the other physical constants that define it.[8]

Since the Bohr model is not perfectly accurate, due tofine structure,hyperfine splitting, and other such effects, the Rydberg constantR{\displaystyle R_{\infty }} cannot bedirectly measured at very high accuracy from theatomic transition frequencies of hydrogen alone. Instead, the Rydberg constant is inferred from measurements of atomic transition frequencies in three different atoms (hydrogen,deuterium, andantiprotonic helium). Detailed theoretical calculations in the framework ofquantum electrodynamics are used to account for the effects of finite nuclear mass, fine structure, hyperfine splitting, and so on. Finally, the value ofR{\displaystyle R_{\infty }} is determined from thebest fit of the measurements to the theory.[9]

Alternative expressions

[edit]

The Rydberg constant can also be expressed as in the following equations.

R=α2mec2h=α22λe=α4πa0{\displaystyle R_{\infty }={\frac {\alpha ^{2}m_{\text{e}}c}{2h}}={\frac {\alpha ^{2}}{2\lambda _{\text{e}}}}={\frac {\alpha }{4\pi a_{0}}}}

and in energy units

Ry=hcR=12mec2α2=12e4me(4πε0)22=12mec2rea0=12hcα2λe=12hfCα2=12ωCα2=12me(a0)2=12e2(4πε0)a0,{\displaystyle {\text{Ry}}=hcR_{\infty }={\frac {1}{2}}m_{\text{e}}c^{2}\alpha ^{2}={\frac {1}{2}}{\frac {e^{4}m_{\text{e}}}{(4\pi \varepsilon _{0})^{2}\hbar ^{2}}}={\frac {1}{2}}{\frac {m_{\text{e}}c^{2}r_{\text{e}}}{a_{0}}}={\frac {1}{2}}{\frac {hc\alpha ^{2}}{\lambda _{\text{e}}}}={\frac {1}{2}}hf_{\text{C}}\alpha ^{2}={\frac {1}{2}}\hbar \omega _{\text{C}}\alpha ^{2}={\frac {1}{2m_{\text{e}}}}\left({\dfrac {\hbar }{a_{0}}}\right)^{2}={\frac {1}{2}}{\frac {e^{2}}{(4\pi \varepsilon _{0})a_{0}}},}

where

The last expression in the first equation shows that the wavelength of light needed to ionize a hydrogen atom is 4π/α times the Bohr radius of the atom.

The second equation is relevant because its value is the coefficient for the energy of the atomic orbitals of a hydrogen atom:En=hcR/n2{\displaystyle E_{n}=-hcR_{\infty }/n^{2}}.

See also

[edit]

References

[edit]
  1. ^Pohl, Randolf; Antognini, Aldo; Nez, François; Amaro, Fernando D.; Biraben, François; Cardoso, João M. R.; Covita, Daniel S.; Dax, Andreas; Dhawan, Satish; Fernandes, Luis M. P.; Giesen, Adolf; Graf, Thomas; Hänsch, Theodor W.; Indelicato, Paul; Julien, Lucile; Kao, Cheng-Yang; Knowles, Paul; Le Bigot, Eric-Olivier; Liu, Yi-Wei; Lopes, José A. M.; Ludhova, Livia; Monteiro, Cristina M. B.; Mulhauser, Françoise; Nebel, Tobias; Rabinowitz, Paul; Dos Santos, Joaquim M. F.; Schaller, Lukas A.; Schuhmann, Karsten; Schwob, Catherine; Taqqu, David (2010). "The size of the proton".Nature.466 (7303):213–216.Bibcode:2010Natur.466..213P.doi:10.1038/nature09250.PMID 20613837.S2CID 4424731.
  2. ^ab"2022 CODATA Value: Rydberg constant".The NIST Reference on Constants, Units, and Uncertainty.NIST. May 2024. Retrieved2024-05-18.
  3. ^Quantum Mechanics (2nd Edition), B.H. Bransden,C.J. Joachain, Prentice Hall publishers, 2000,ISBN 0-582-35691-1
  4. ^"2022 CODATA Value: Rydberg constant times hc in J".The NIST Reference on Constants, Units, and Uncertainty.NIST. May 2024. Retrieved2024-05-18.
  5. ^"2022 CODATA Value: Rydberg constant times hc in eV".The NIST Reference on Constants, Units, and Uncertainty.NIST. May 2024. Retrieved2024-05-18.
  6. ^"2022 CODATA Value: Rydberg constant times c in Hz".The NIST Reference on Constants, Units, and Uncertainty.NIST. May 2024. Retrieved2024-05-18.
  7. ^Coffman, Moody L. (1965). "Correction to the Rydberg Constant for Finite Nuclear Mass".American Journal of Physics.33 (10):820–823.Bibcode:1965AmJPh..33..820C.doi:10.1119/1.1970992.
  8. ^P.J. Mohr, B.N. Taylor, and D.B. Newell (2015), "The 2014 CODATA Recommended Values of the Fundamental Physical Constants" (Web Version 7.0). This database was developed by J. Baker, M. Douma, andS. Kotochigova. Available:http://physics.nist.gov/constants. National Institute of Standards and Technology, Gaithersburg, MD 20899.Link to R,Link to hcR. Published inMohr, Peter J.; Taylor, Barry N.; Newell, David B. (2012). "CODATA recommended values of the fundamental physical constants: 2010".Reviews of Modern Physics.84 (4):1527–1605.arXiv:1203.5425.Bibcode:2012RvMP...84.1527M.doi:10.1103/RevModPhys.84.1527.S2CID 103378639""{{cite journal}}: CS1 maint: postscript (link) andMohr, Peter J.; Taylor, Barry N.; Newell, David B. (2012). "CODATA Recommended Values of the Fundamental Physical Constants: 2010".Journal of Physical and Chemical Reference Data.41 (4): 043109.arXiv:1507.07956.Bibcode:2012JPCRD..41d3109M.doi:10.1063/1.4724320""{{cite journal}}: CS1 maint: postscript (link).
  9. ^Mohr, Peter J.; Taylor, Barry N.; Newell, David B. (2008). "CODATA recommended values of the fundamental physical constants: 2006".Reviews of Modern Physics.80 (2):633–730.arXiv:0801.0028.Bibcode:2008RvMP...80..633M.doi:10.1103/RevModPhys.80.633.
Physical
constants
Retrieved from "https://en.wikipedia.org/w/index.php?title=Rydberg_constant&oldid=1245191135"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp