Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Rutin

From Wikipedia, the free encyclopedia
Rutin
Rutin
Rutin
Names
IUPAC name
3′,4′,5,7-Tetrahydroxy-3-[α-L-rhamnopyranosyl-(1→6)-β-D-glucopyranosyloxy]flavone
Systematic IUPAC name
(42S,43R,44S,45S,46R,72R,73R,74R,75R,76S)-13,14,25,27,43,44,45,73,74,75-Decahydroxy-76-methyl-24H-3,6-dioxa-2(2,3)-[1]benzopyrana-4(2,6),7(2)-bis(oxana)-1(1)-benzenaheptaphane-24-one
Other names
Rutoside(INN)
Phytomelin
Sophorin
Birutan
Eldrin
Birutan Forte
Rutin trihydrate
Globularicitrin
Violaquercitrin
Quercetin rutinoside
Identifiers
3D model (JSmol)
ChemSpider
DrugBank
ECHA InfoCard100.005.287Edit this at Wikidata
KEGG
RTECS number
  • VM2975000
UNII
  • InChI=1S/C27H30O16/c1-8-17(32)20(35)22(37)26(40-8)39-7-15-18(33)21(36)23(38)27(42-15)43-25-19(34)16-13(31)5-10(28)6-14(16)41-24(25)9-2-3-11(29)12(30)4-9/h2-6,8,15,17-18,20-23,26-33,35-38H,7H2,1H3/t8-,15+,17-,18+,20+,21-,22+,23+,26+,27-/m0/s1
  • CC1C(C(C(C(O1)OCC2C(C(C(C(O2)OC3=C(OC4=CC(=CC(=C4C3=O)O)O)C5=CC(=C(C=C5)O)O)O)O)O)O)O)O
Properties
C27H30O16
Molar mass610.521 g·mol−1
AppearanceSolid
Melting point242 °C (468 °F; 515 K)
12.5 mg/100 mL[1]
13 mg/100mL[2]
Pharmacology
C05CA01 (WHO)
Hazards
NFPA 704 (fire diamond)
Except where otherwise noted, data are given for materials in theirstandard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)
Chemical compound

Rutin (rutoside,quercetin-3-O-rutinoside orsophorin) is theglycoside combining theflavonolquercetin and thedisacchariderutinose (α-L-rhamnopyranosyl-(1→6)-β-D-glucopyranose). It is aflavonoid glycoside found in a wide variety of plants, includingcitrus.

Occurrences

[edit]

Rutin is one of thephenolic compounds found in the plant speciesCarpobrotus edulis. Its name comes from the name ofRuta graveolens, a plant that also contains rutin. Various citrusfruit peels contain 32 to 49 mg per g offlavonoids expressed as rutin equivalents.[3] Citrus leaves contain rutin at concentrations of 11 g per kg in orange trees and 7 g per kg in lime trees.[4]In 2021,Samoan researchers identified rutin in the native plantmatalafi (Psychotria insularum).[5]

Metabolism

[edit]

The enzymequercitrinase found inAspergillus flavus is in the rutincatabolic pathway.[6]

In food

[edit]

Rutin is acitrusflavonoidglycoside found in many plants, includingbuckwheat,[7] the leaves andpetioles ofRheum species, andasparagus.Tartary buckwheat seeds have been found to contain more rutin (about 0.8–1.7% dry weight) than common buckwheat seeds (0.01% dry weight).[7] Rutin is one of the primary flavonols found in 'clingstone'peaches.[8] It is also found ingreen tea infusions.[9]

Approximate rutin content of selected foods, inmilligrams per 100 grams ormilliliters:[10]

Sortable table
NumericAlphabetic
389[11]Tartary buckwheat, roasted bran
332Capers, spice
68[11]Tartary buckwheat, roasted grain
45Olive (black), raw
36Buckwheat, whole grain flour
32Green tea, infusion
23Asparagus, raw
19Black raspberry, raw
17Black tea, infusion
11Red raspberry, raw
9Buckwheat, groats, thermally treated
6Buckwheat, refined flour
6Greencurrant
6Plum, fresh
5Blackcurrant, raw
4Blackberry, raw
3Tomato (cherry), whole, raw
2Prune
2Fenugreek
2Marjoram, dried
1Grape, raisin
1Zucchini, raw
1Apricot, raw
0Apple
0Redcurrant
0Grape (green)
0Tomato, whole, raw

Research

[edit]

Rutin (rutoside or rutinoside)[12] and other dietaryflavonols are under preliminaryclinical research for their potential biological effects, such as in reducingpost-thrombotic syndrome,venous insufficiency, orendothelial dysfunction, but there remains nohigh-quality evidence for their safe and effective uses, as of 2018.[12][13][14] A 2020 review indicated that oral rutosides may reduce legedema by a small amount in people with post-thrombotic syndrome, but the risk ofadverse effects was higher.[15]

As aflavonol among similar flavonoids, rutin has lowbioavailability due to poorabsorption, highmetabolism, and rapidexcretion that collectively make its biological properties in vivo difficult to study, and its potential for use as atherapeutic agent limited.[12]

Biosynthesis

[edit]

The biosynthesis pathway of rutin in mulberry (Morus alba L.) leaves begins withphenylalanine, which producescinnamic acid under the action ofphenylalanine ammonia lyase (PAL). Cinnamic acid is catalyzed by cinnamic acid-4-hydroxylase (C4H) and4-coumarate-CoA ligase (4CL) to formp-coumaroyl-CoA. Subsequently,chalcone synthase (CHS) catalyzes the condensation ofp-coumaroyl-CoA and three molecules ofmalonyl-CoA to producenaringenin chalcone, which is eventually converted into naringenin flavanone with the participation ofchalcone isomerase (CHI). With the action of flavanone 3-hydroxylas (F3H),dihydrokaempferol (DHK) is generated. DHK can be further hydroxylated by flavonoid 3´-hydroxylase (F3'H) to producedihydroquercetin (DHQ), which is then catalyzed byflavonol synthase (FLS) to formquercetin. After quercetin is catalyzed by UDP-glucose flavonoid 3-O-glucosyltransferase (UFGT) to formisoquercitrin, finally, the formation of rutin from isoquercitrin is catalyzed by flavonoid 3-O-glucoside L-rhamnosyltransferase.[16]

References

[edit]
  1. ^Merck Index, 12th Edition,8456
  2. ^Krewson CF, Naghski J (November 1952). "Some physical properties of rutin".Journal of the American Pharmaceutical Association.41 (11):582–587.doi:10.1002/jps.3030411106.PMID 12999623.
  3. ^Wang, Yuan-Chuen; Chuang, Yueh-Chueh; Hsu, Hsing-Wen (2008). "The flavonoid, carotenoid and pectin content in peels of citrus cultivated in Taiwan".Food Chemistry.106 (1):277–284.doi:10.1016/j.foodchem.2007.05.086.ISSN 0308-8146.
  4. ^Soares, Márcio Santos; da Silva, Danielle Fernandes; Forim, Moacir Rossi; et al. (2015). "Quantification and localization of hesperidin and rutin inCitrus sinensis grafted onC. limonia afterXylella fastidiosa infection by HPLC-UV and MALDI imaging mass spectrometry".Phytochemistry.115:161–170.Bibcode:2015PChem.115..161S.doi:10.1016/j.phytochem.2015.02.011.ISSN 0031-9422.PMID 25749617.
  5. ^Molimau-Samasoni S, Woolner VH, Foliga ST, et al. (November 2021)."Functional genomics and metabolomics advance the ethnobotany of the Samoan traditional medicine "matalafi"".Proceedings of the National Academy of Sciences of the United States of America.118 (45) e2100880118.Bibcode:2021PNAS..11800880M.doi:10.1073/pnas.2100880118.PMC 8609454.PMID 34725148.S2CID 240423413.
  6. ^Tranchimand S, Brouant P, Iacazio G (November 2010). "The rutin catabolic pathway with special emphasis on quercetinase".Biodegradation.21 (6):833–859.doi:10.1007/s10532-010-9359-7.PMID 20419500.S2CID 30101803.
  7. ^abKreft S, Knapp M, Kreft I (November 1999). "Extraction of rutin from buckwheat (Fagopyrum esculentumMoench) seeds and determination by capillary electrophoresis".Journal of Agricultural and Food Chemistry.47 (11):4649–4652.Bibcode:1999JAFC...47.4649K.doi:10.1021/jf990186p.PMID 10552865.
  8. ^Chang S, Tan C, Frankel EN, Barrett DM (February 2000). "Low-density lipoprotein antioxidant activity of phenolic compounds and polyphenol oxidase activity in selected clingstone peach cultivars".Journal of Agricultural and Food Chemistry.48 (2):147–151.Bibcode:2000JAFC...48..147C.doi:10.1021/jf9904564.PMID 10691607.
  9. ^Malagutti AR, Zuin V, Cavalheiro ÉT, Henrique Mazo L (2006). "Determination of Rutin in Green Tea Infusions Using Square-Wave Voltammetry with a Rigid Carbon-Polyurethane Composite Electrode".Electroanalysis.18 (10):1028–1034.doi:10.1002/elan.200603496.
  10. ^"foods in which the polyphenol Quercetin 3-O-rutinoside is found". Phenol-Explorer v 3.6. June 2015.
  11. ^abNoda, T.; Ishiguro, K.; Suzuki, T.; Morishita, T. (2021)."Roasted Tartary Buckwheat Bran as a Material for Producing Rutin-Rich Tea Beverages".Plants.10 (12): 2662.Bibcode:2021Plnts..10.2662N.doi:10.3390/plants10122662.PMC 8704535.PMID 34961131.
  12. ^abc"Flavonoids". Micronutrient Information Center, Linus Pauling Institute, Oregon State University, Corvallis, Oregon. 2025. Retrieved15 September 2025.
  13. ^Morling JR, Broderick C, Yeoh SE, Kolbach DN (November 2018)."Rutosides for treatment of post-thrombotic syndrome".The Cochrane Database of Systematic Reviews.2018 (11) CD005625.doi:10.1002/14651858.CD005625.pub4.PMC 6517027.PMID 30406640.
  14. ^Martinez-Zapata, Maria José; Vernooij, Robin Wm; Simancas-Racines, Daniel; et al. (2020-11-03)."Phlebotonics for venous insufficiency".The Cochrane Database of Systematic Reviews.2020 (11) CD003229.doi:10.1002/14651858.CD003229.pub4.ISSN 1469-493X.PMC 8094625.PMID 33141449.
  15. ^Martinez-Zapata, Maria José; Vernooij, Robin Wm; Simancas-Racines, Daniel; et al. (3 November 2020)."Phlebotonics for venous insufficiency".The Cochrane Database of Systematic Reviews.2020 (11) CD003229.doi:10.1002/14651858.CD003229.pub4.ISSN 1469-493X.PMC 8094625.PMID 33141449.
  16. ^Yu X, Liu J, Wan J, et al. (2020)."Cloning, prokaryotic expression, and enzyme activity of a UDP-glucose flavonoid 3-o-glycosyltransferase from mulberry (Morus alba L.) leaves"(PDF).Pharmacognosy Magazine.16 (69):441–7.doi:10.4103/pm.pm_396_19.

External links

[edit]
  • Media related toRutin at Wikimedia Commons
Flavonols and their conjugates
Backbone
Aglycones
Flavonols
Aglycones
Conjugates
Glycosides ofherbacetin
Glycosides ofkaempferol
Glycosides ofmyricetin
Conjugates ofquercetin
Sulfates
Glycosides
O-Methylated flavonols
Aglycones
Glycosides
of isorhamnetin
other
Derivative flavonols
Aglycones
Glycosides
Pyranoflavonols
Aglycones
Furanoflavonols
Aglycones
Glycosides
Semisynthetic
Glycosides
Antihemorrhoidals for topical use
corticosteroids
local anesthetics
other
Antivaricose therapy
heparins orheparinoids for topical use
sclerosing agents for local injection
other
Capillary stabilising agents
bioflavonoids
other
Retrieved from "https://en.wikipedia.org/w/index.php?title=Rutin&oldid=1311578966"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp