Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Isotopes of rutherfordium

From Wikipedia, the free encyclopedia
(Redirected fromRutherfordium-267)

Isotopes ofrutherfordium (104Rf)
Main isotopes[1]Decay
abun­dancehalf-life(t1/2)modepro­duct
261Rfsynth2.1 sSF82%
α18%257No
263Rfsynth15 min[2]SF<100%?
α~30%?259No
265Rfsynth1.1 min[3]SF
267Rfsynth48 min[4]SF

Rutherfordium (104Rf) is asynthetic element and thus has nostable isotopes. Astandard atomic weight cannot be given. The firstisotope to be synthesized was either259Rf in 1966 or257Rf in 1969. There are 17 knownradioisotopes from252Rf to270Rf (three of which,266Rf,268Rf, and270Rf, are unconfirmed) and severalisomers. The longest-lived isotope is267Rf with ahalf-life of 48 minutes, and the longest-lived isomer is263mRf with a half-life of 8 seconds.

List of isotopes

[edit]


Nuclide
[n 1]
ZNIsotopic mass(Da)
[n 2][n 3]
Half-life
[n 4]
Decay
mode

[n 5]
Daughter
isotope

Spin and
parity
[n 6][n 4]
Excitation energy[n 4]
252Rf[5]10414860+90
−30
 ns
SF(various)0+
252mRf[5]13+4
−3
 μs
SF (≤90%)(various)(6+)
IT (≥10%)252Rf
253Rf[6]104149253.10044(44)#9.9(12) msSF (83%)(various)(1/2+)
α (17%)249No
253m1Rf200(150)# keV52.8(44) μsSF(various)(7/2+)
253m2Rf>1020 keV660+400
−180
 μs
IT253m1Rf
254Rf[7]104150254.10005(30)#23.2(11) μsSF (100%)(various)0+
α (<1.5%)[8]250No
254m1Rf>1350 keV4.7(11) μsIT254Rf(8−)
254m2Rf247(73) μsIT254m1Rf(16+)
255Rf[9]104151255.10127(12)#1.69(3) sSF (50.9%)(various)(9/2−)
α (49.1%)251No
β+ (<6%)255Lr
255m1Rf150 keV50(17) μsIT255Rf(5/2+)
255m2Rf1103 keV29+7
−5
 μs
IT255Rf(19/2+)
255m3Rf1303 keV49+13
−10
 μs
IT255Rf(25/2+)
256Rf[10]104152256.101152(19)6.67(9) msSF (99.68%)(various)0+
α (0.32%)[11]252No
256m1Rf~1120 keV25(2) μsIT256Rf
256m2Rf~1400 keV17(2) μsIT256m1Rf
256m3Rf>2200 keV27(5) μsIT256m2Rf
257Rf104153257.102917(12)[12]6.2+1.2
−1.0
 s
[13]
α (89.3%)253No(1/2+)
β+ (9.4%)[14]257mLr
SF (1.3%)[15](various)
257m1Rf[13]74 keV4.37(5) sα (80.54%)253No(11/2−)
IT (14.2%)257Rf
β+ (4.86%)257Lr
SF (0.4%)(various)
257m2Rf[16]~1125 keV134.9(77) μsIT257m1Rf(21/2, 23/2)
258Rf[1]104154258.10343(3)12.5(5) msSF (95.1%)(various)0+
α (4.9%)254No
258m1Rf1200(300)# keV2.4+2.4
−0.8
 ms
[17]
IT258Rf
258m2Rf1500(500)# keV15(10) μsIT258m1Rf
259Rf[1]104155259.10560(8)#2.63(26) sα (85%)255No3/2+#
β+ (15%)259Lr
260Rf104156260.10644(22)#21(1) msSF(various)0+
α (<20%)[18]256No
261Rf104157261.10877(5)75(7) s[19]α257No9/2+#
β+ (<14%)[20]261Lr
SF (<11%)[21](various)
261mRf70(100)# keV1.9(4) s[22]SF (73%)(various)3/2+#
α (27%)257No
262Rf104158262.10993(24)#210+128
−58
 ms
[23]
SF(various)0+
262mRf600(400)# keV47(5) msSF(various)high
263Rf104159263.1125(2)#11(3) minSF (77%)(various)3/2+#
α (23%)[24]259No
263mRf[n 7]5.1+4.6
−1.7
 s
[25]
SF(various)1/2#
265Rf[n 8]104161265.11668(39)#1.1+0.8
−0.3
 min
[3]
SF(various)
266Rf[n 9][n 10]104162266.11817(50)#23 s#[26][27]SF(various)0+
267Rf[n 11]104163267.12179(62)#48+23
−12
 min
[4]
SF(various)13/2−#
268Rf[n 9][n 12]104164268.12397(77)#1.4 s#[27][28]SF(various)0+
270Rf[29][n 9][n 13]10416620 ms#[27][30]SF(various)0+
This table header & footer:
  1. ^mRf – Excitednuclear isomer.
  2. ^( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. ^# – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^abc# – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  5. ^Modes of decay:
    SF:Spontaneous fission
  6. ^( ) spin value – Indicates spin with weak assignment arguments.
  7. ^Not directly synthesized, occurs indecay chain of271Hs
  8. ^Not directly synthesized, occurs indecay chain of285Fl
  9. ^abcDiscovery of this isotope is unconfirmed
  10. ^Not directly synthesized, occurs in decay chain of282Nh
  11. ^Not directly synthesized, occurs in decay chain of287Fl
  12. ^Not directly synthesized, occurs in decay chain of288Mc
  13. ^Not directly synthesized, occurs in decay chain of294Ts

Nucleosynthesis

[edit]

Super-heavy elements such as rutherfordium are produced by bombarding lighter elements inparticle accelerators that inducesfusion reactions. Whereas most of the isotopes of rutherfordium can be synthesized directly this way, some heavier ones have only been observed as decay products of elements with higheratomic numbers.[31]

Depending on the energies involved, the former are separated into "hot" and "cold". In hot fusion reactions, very light, high-energy projectiles are accelerated toward very heavy targets (actinides), giving rise to compound nuclei at high excitation energy (~40–50 MeV) that may either fission or evaporate several (3 to 5) neutrons.[31] In cold fusion reactions, the produced fused nuclei have a relatively low excitation energy (~10–20 MeV), which decreases the probability that these products will undergo fission reactions. As the fused nuclei cool to theground state, they require emission of only one or two neutrons, and thus, allows for the generation of more neutron-rich products.[32] The latter is a distinct concept from that of where nuclear fusion claimed to be achieved at room temperature conditions (seecold fusion).[33]

Hot fusion studies

[edit]

The synthesis of rutherfordium was first attempted in 1964 by the team at Dubna using the hot fusion reaction ofneon-22 projectiles withplutonium-242 targets:

242
94
Pu
+22
10
Ne
264−x
104
Rf
+ 3 or 5
n
.

The first study produced evidence for aspontaneous fission with a 0.3 secondhalf-life and another one at 8 seconds. While the former observation was eventually retracted, the latter eventually became associated with the259Rf isotope.[34] In 1966, the Soviet team repeated the experiment using a chemical study of volatile chloride products. They identified a volatile chloride with eka-hafnium properties that decayed fast through spontaneous fission. This gave strong evidence for the formation of RfCl4, and although a half-life was not accurately measured, later evidence suggested that the product was most likely259Rf. The team repeated the experiment several times over the next few years, and in 1971, they revised the spontaneous fission half-life for the isotope at 4.5 seconds.[34]

In 1969, researchers at theUniversity of California led byAlbert Ghiorso, tried to confirm the original results reported at Dubna. In a reaction ofcurium-248 withoxygen-16, they were unable to confirm the result of the Soviet team, but managed to observe the spontaneous fission of260Rf with a very short half-life of 10–30 ms:

248
96
Cm
+16
8
O
260
104
Rf
+ 4
n
.

In 1970, the American team also studied the same reaction withoxygen-18 and identified261Rf with a half-life of 65 seconds (later refined to 75 seconds).[35][36] Later experiments at theLawrence Berkeley National Laboratory in California also revealed the formation of a short-lived isomer of262Rf (which undergoes spontaneous fission with a half-life of 47 ms),[37] and spontaneous fission activities with long lifetimes tentatively assigned to263Rf.[38]

Diagram of the experimental set-up used in the discovery of isotopes257Rf and259Rf

The reaction ofcalifornium-249 withcarbon-13 was also investigated by the Ghiorso team, which indicated the formation of the short-lived258Rf (which undergoes spontaneous fission in 11 ms):[39]

249
98
Cf
+13
6
C
258
104
Rf
+ 4
n
.

In trying to confirm these results by usingcarbon-12 instead, they also observed the firstalpha decays from257Rf.[39]

The reaction ofberkelium-249 withnitrogen-14 was first studied in Dubna in 1977, and in 1985, researchers there confirmed the formation of the260Rf isotope which quickly undergoes spontaneous fission in 28 ms:[34]

249
97
Bk
+14
7
N
260
104
Rf
+ 3
n
.

In 1996 the isotope262Rf was observed in LBNL from the fusion of plutonium-244 with neon-22:

244
94
Pu
+22
10
Ne
266−x
104
Rf
+ 4 or 5
n
.

The team determined a half-life of 2.1 seconds, in contrast to earlier reports of 47 ms and suggested that the two half-lives might be due to different isomeric states of262Rf.[40] Studies on the same reaction by a team at Dubna, lead to the observation in 2000 of alpha decays from261Rf and spontaneous fissions of261mRf.[41]

The hot fusion reaction using a uranium target was first reported at Dubna in 2000:

238
92
U
+26
12
Mg
264−x
104
Rf
+ x
n
(x = 3, 4, 5, 6).

They observed decays from260Rf and259Rf, and later for259Rf. In 2006, as part of their program on the study of uranium targets in hot fusion reactions, the team at LBNL also observed261Rf.[41][42][43]

Cold fusion studies

[edit]

The first cold fusion experiments involving element 104 were done in 1974 at Dubna, by using lighttitanium-50 nuclei aimed at lead-208 isotope targets:

208
82
Pb
+50
22
Ti
258−x
104
Rf
+ x
n
(x = 1, 2, or 3).

The measurement of a spontaneous fission activity was assigned to256Rf,[44] while later studies done at theGesellschaft für Schwerionenforschung Institute (GSI), also measured decay properties for the isotopes257Rf, and255Rf.[45][46]

In 1974 researchers at Dubna investigated the reaction oflead-207 with titanium-50 to produce the isotope255Rf.[47] In a 1994 study at GSI using the lead-206 isotope,255Rf as well as254Rf were detected.253Rf was similarly detected that year when lead-204 was used instead.[46]

Decay studies

[edit]

Most isotopes with anatomic mass below 262 have also observed as decay products of elements with a higheratomic number, allowing for refinement of their previously measured properties. Heavier isotopes of rutherfordium have only been observed as decay products. For example, a few alpha decay events terminating in267Rf were observed in the decay chain ofdarmstadtium-279 since 2004:

279
110
Ds
275
108
Hs
+
α
271
106
Sg
+
α
267
104
Rf
+
α
.

This further underwent spontaneous fission with a half-life of about 1.3 h.[48][49][50]

Investigations on the synthesis of thedubnium-263 isotope in 1999 at theUniversity of Bern revealed events consistent withelectron capture to form263Rf. A rutherfordium fraction was separated, and several spontaneous fission events with long half-lives of about 15 minutes were observed, as well as alpha decays with half-lives of about 10 minutes.[38] Reports on the decay chain offlerovium-285 in 2010 showed five sequential alpha decays that terminate in265Rf, which further undergoes spontaneous fission with a half-life of 152 seconds.[51]

Some experimental evidence was obtained in 2004 for a heavier isotope,268Rf, in the decay chain of an isotope ofmoscovium:

288
115
Mc
284
113
Nh
+
α
280
111
Rg
+
α
276
109
Mt
+
α
272
107
Bh
+
α
268
105
Db
+
α
 ? →268
104
Rf
+
ν
e
.

However, the last step in this chain was uncertain. After observing the five alpha decay events that generatedubnium-268, spontaneous fission events were observed with a long half-life. It is unclear whether these events were due to direct spontaneous fission of268Db, or268Db producedelectron capture events with long half-lives to generate268Rf. If the latter is produced and decays with a short half-life, the two possibilities cannot be distinguished.[52] Given that theelectron capture of268Db cannot be detected, these spontaneous fission events may be due to268Rf, in which case the half-life of this isotope cannot be extracted.[28][53] A similar mechanism is proposed for the formation of the even heavier isotope270Rf as a short-lived daughter of270Db (in the decay chain of294Ts, first synthesized in 2010) which then undergoes spontaneous fission:[29]

294
117
Ts
290
115
Mc
+
α
286
113
Nh
+
α
282
111
Rg
+
α
278
109
Mt
+
α
274
107
Bh
+
α
270
105
Db
+
α
 ? →270
104
Rf
+
ν
e
.

According to a 2007 report on the synthesis ofnihonium, the isotope282Nh was twice observed to undergo a similar decay to form266Db. In one case this underwent spontaneous fission with a half-life of 22 minutes. Given that the electron capture of266Db cannot be detected, these spontaneous fission events may be due to266Rf, in which case the half-life of this isotope cannot be extracted. In the other case, no spontaneous fission event was observed; it could have been missed, or266Db might have undergone two more alpha decays to long-lived258Md, with a half-life (51.5 d) longer than the total time of the experiment.[26][54]

Chronology of isotope discovery

[edit]
Summary of all rutherfordium isotopes known
IsotopeHalf-lifeRefDecay modeYear discovereddiscovery reaction
252Rf60 ns[5]SF2024204Pb(50Ti,2n)
252mRf13 μs[5]2024204Pb(50Ti,2n)
253Rf13 ms[1]SF, α1997204Pb(50Ti,n)[46]
253mRf52 μs[1]SF1995204Pb(50Ti,n)[46]
254Rf22.9 μs[1]SF1997206Pb(50Ti,2n)[46]
254m1Rf4.3 μs[1]IT2015
254m2Rf247 μs[1]IT2015
255Rf1.63 s[1]α, SF1975207Pb(50Ti,2n)[47]
255m1Rf43 μs[1]IT2015
255m2Rf16 μs[1]IT2020
255m3Rf41 μs[1]IT2020
256Rf6.60 ms[1]SF, α1975208Pb(50Ti,2n)[47]
256m1Rf25 μs[1]IT2009
256m2Rf17 μs[1]IT2009
256m3Rf27 μs[1]IT2009
257Rf5.0 s[1]α, β+, SF1969249Cf(12C,4n)[39]
257m1Rf4.5 s[1]α, β+1997249Cf(12C,4n)[46]
257m2Rf106 μs[1]IT2009
258Rf12.5 ms[1]SF, α1969249Cf(13C,4n)[39]
258m1Rf3.4 ms[1]IT2016258Db(
e
,
ν
e
)[55]
258m2Rf15 μs[1]2016258Db(
e
,
ν
e
)[55]
259Rf2.63 s[1]α, β+1969249Cf(13C,3n)[39]
260Rf21 ms[1]SF1985248Cm(16O,4n)[34]
261Rf2.1 s[1]SF, α1970244Pu(22Ne,5n)[56]
261mRf74 s[1]α1970248Cm(18O,5n)[35]
262Rf250 ms[1]SF1985244Pu(22Ne,4n)[40]
262mRf47 ms[1]SF1978244Pu(22Ne,4n),
248Cm(18O,4n)[57]
263Rf11 min[1]SF2003263Db(
e
,
ν
e
)[38]
263mRf8 s[58]SF2008263Db(
e
,
ν
e
)
265Rf1.1 min[3]SF2010269Sg(—,α)[51]
266Rf23 s?[59]SF2007?266Db(
e
,
ν
e
)?[26]
267Rf48 min[60]SF2004271Sg(—,α)[48]
268Rf1.4 s?[59]SF2004?268Db(
e
,
ν
e
)?[12][61]
270Rf20 ms?[59]SF2010?270Db(
e
,
ν
e
)?[62]


Nuclear isomerism

[edit]
Currently suggested decay level scheme for257Rfg,m from the studies reported in 2007 by Hessbergeret al. at GSI[63]

Several early studies on the synthesis of263Rf have indicated that this nuclide decays primarily by spontaneous fission with a half-life of 10–20 minutes. More recently, a study ofhassium isotopes allowed the synthesis of atoms of263Rf decaying with a shorter half-life of 8 seconds. These two different decay modes must be associated with two isomeric states, but specific assignments are difficult due to the low number of observed events.[38]

During research on the synthesis of rutherfordium isotopes utilizing the244Pu(22Ne,5n)261Rf reaction, the product was found to undergo exclusive 8.28 MeV alpha decay with a half-life of 78 seconds. Later studies atGSI on the synthesis ofcopernicium and hassium isotopes produced conflicting data, as261Rf produced in the decay chain was found to undergo 8.52 MeV alpha decay with a half-life of 4 seconds. Later results indicated a predominant fission branch. These contradictions led to some doubt on the discovery of copernicium. The first isomer is currently denoted261aRf (or simply261Rf) whilst the second is denoted261bRf (or261mRf). However, it is thought that the first nucleus belongs to a high-spin ground state and the latter to a low-spin metastable state.[56]The discovery and confirmation of261bRf provided proof for the discovery of copernicium in 1996.[64]

A detailed spectroscopic study of the production of257Rf nuclei using the reaction208Pb(50Ti,n)257Rf allowed the identification of an isomeric level in257Rf. The work confirmed that257gRf has a complex spectrum with 15 alpha lines. A level structure diagram was calculated for both isomers.[65] Similar isomers were reported for256Rf also.[66]

Chemical yields of isotopes

[edit]

Cold fusion

[edit]

The table below provides cross-sections and excitation energies for cold fusion reactions producing rutherfordium isotopes directly. Data in bold represents maxima derived from excitation function measurements. + represents an observed exit channel.

ProjectileTargetCN1n2n3n
50Ti208Pb258Rf38.0 nb, 17.0 MeV12.3 nb, 21.5 MeV660 pb, 29.0 MeV
50Ti207Pb257Rf4.8 nb
50Ti206Pb256Rf800 pb, 21.5 MeV2.4 nb, 21.5 MeV
50Ti204Pb254Rf190 pb, 15.6 MeV
48Ti208Pb256Rf380 pb, 17.0 MeV

Hot fusion

[edit]

The table below provides cross-sections and excitation energies for hot fusion reactions producing rutherfordium isotopes directly. Data in bold represents maxima derived from excitation function measurements. + represents an observed exit channel.

ProjectileTargetCN3n4n5n
26Mg238U264Rf240 pb1.1 nb
22Ne244Pu266Rf+4.0 nb
18O248Cm266Rf+13.0 nb

References

[edit]
  1. ^abcdefghijklmnopqrstuvwxyzaaabacKondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021)."The NUBASE2020 evaluation of nuclear properties"(PDF).Chinese Physics C.45 (3): 030001.doi:10.1088/1674-1137/abddae.
  2. ^Sonzogni, Alejandro."Interactive Chart of Nuclides". National Nuclear Data Center: Brookhaven National Laboratory. Retrieved2008-06-06.
  3. ^abcUtyonkov, V. K.; Brewer, N. T.; Oganessian, Yu. Ts.; Rykaczewski, K. P.; Abdullin, F. Sh.; Dimitriev, S. N.; Grzywacz, R. K.; Itkis, M. G.; Miernik, K.; Polyakov, A. N.; Roberto, J. B.; Sagaidak, R. N.; Shirokovsky, I. V.; Shumeiko, M. V.; Tsyganov, Yu. S.; Voinov, A. A.; Subbotin, V. G.; Sukhov, A. M.; Karpov, A. V.; Popeko, A. G.; Sabel'nikov, A. V.; Svirikhin, A. I.; Vostokin, G. K.; Hamilton, J. H.; Kovrinzhykh, N. D.; Schlattauer, L.; Stoyer, M. A.; Gan, Z.; Huang, W. X.; Ma, L. (30 January 2018). "Neutron-deficient superheavy nuclei obtained in the240Pu+48Ca reaction".Physical Review C.97 (14320): 014320.Bibcode:2018PhRvC..97a4320U.doi:10.1103/PhysRevC.97.014320.
  4. ^abOganessian, Yu. Ts.; Utyonkov, V. K.; Ibadullayev, D.; et al. (2022). "Investigation of48Ca-induced reactions with242Pu and238U targets at the JINR Superheavy Element Factory".Physical Review C.106 (24612): 024612.Bibcode:2022PhRvC.106b4612O.doi:10.1103/PhysRevC.106.024612.S2CID 251759318.
  5. ^abcdKhuyagbaatar, J.; Mosat, P.; Ballof, J.; et al. (2025). "Stepping into the sea of instability: The new sub-𝜇s superheavy nucleus252Rf".Physical Review Letters.134 (022501).arXiv:2501.08955.doi:10.1103/PhysRevLett.134.022501.
  6. ^Lopez-Martens, A.; Hauschild, K.; Svirikhin, A. I.; Asfari, Z.; Chelnokov, M. L.; Chepigin, V. I.; Dorvaux, O.; Forge, M.; Gall, B.; Isaev, A. V.; Izosimov, I. N.; Kessaci, K.; Kuznetsova, A. A.; Malyshev, O. N.; Mukhin, R. S.; Popeko, A. G.; Popov, Yu. A.; Sailaubekov, B.; Sokol, E. A.; Tezekbayeva, M. S.; Yeremin, A. V. (22 February 2022)."Fission properties of Rf 253 and the stability of neutron-deficient Rf isotopes".Physical Review C.105 (2).arXiv:2202.11802.doi:10.1103/PhysRevC.105.L021306.ISSN 2469-9985.S2CID 247072308. Retrieved16 June 2023.
  7. ^David, H. M.; Chen, J.; Seweryniak, D.; Kondev, F. G.; Gates, J. M.; Gregorich, K. E.; Ahmad, I.; Albers, M.; Alcorta, M.; Back, B. B.; Baartman, B.; Bertone, P. F.; Bernstein, L. A.; Campbell, C. M.; Carpenter, M. P.; Chiara, C. J.; Clark, R. M.; Cromaz, M.; Doherty, D. T.; Dracoulis, G. D.; Esker, N. E.; Fallon, P.; Gothe, O. R.; Greene, J. P.; Greenlees, P. T.; Hartley, D. J.; Hauschild, K.; Hoffman, C. R.; Hota, S. S.; Janssens, R. V. F.; Khoo, T. L.; Konki, J.; Kwarsick, J. T.; Lauritsen, T.; Macchiavelli, A. O.; Mudder, P. R.; Nair, C.; Qiu, Y.; Rissanen, J.; Rogers, A. M.; Ruotsalainen, P.; Savard, G.; Stolze, S.; Wiens, A.; Zhu, S. (24 September 2015)."Decay and Fission Hindrance of Two- and Four-Quasiparticle K Isomers in Rf 254".Physical Review Letters.115 (13): 132502.doi:10.1103/PhysRevLett.115.132502.hdl:1885/152426.ISSN 0031-9007.PMID 26451549.S2CID 22923276. Retrieved16 June 2023.
  8. ^Heßberger, F. P.; Hofmann, S.; Ninov, V.; Armbruster, P.; Folger, H.; Münzenberg, G.; Schött, H. J.; Popeko, A. G.; Yeremin, A. V.; Andreyev, A. N.; Saro, S. (1 December 1997)."Spontaneous fission and alpha-decay properties of neutron deficient isotopes 257−253104 and 258106"(PDF).Zeitschrift für Physik A.359 (4):415–425.Bibcode:1997ZPhyA.359..415A.doi:10.1007/s002180050422.ISSN 1431-5831.S2CID 121551261. Retrieved16 June 2023.
  9. ^Chakma, R.; Lopez-Martens, A.; Hauschild, K.; Yeremin, A. V.; Malyshev, O. N.; Popeko, A. G.; Popov, Yu. A.; Svirikhin, A. I.; Chepigin, V. I.; Sokol, E. A.; Isaev, A. V.; Kuznetsova, A. A.; Chelnokov, M. L.; Tezekbayeva, M. S.; Izosimov, I. N.; Dorvaux, O.; Gall, B.; Asfari, Z. (31 January 2023)."Investigation of isomeric states in Rf 255".Physical Review C.107 (1): 014326.doi:10.1103/PhysRevC.107.014326.ISSN 2469-9985.S2CID 256489616. Retrieved16 June 2023.
  10. ^Jeppesen, H. B.; Dragojević, I.; Clark, R. M.; Gregorich, K. E.; Ali, M. N.; Allmond, J. M.; Beausang, C. W.; Bleuel, D. L.; Cromaz, M.; Deleplanque, M. A.; Ellison, P. A.; Fallon, P.; Garcia, M. A.; Gates, J. M.; Greene, J. P.; Gros, S.; Lee, I. Y.; Liu, H. L.; Macchiavelli, A. O.; Nelson, S. L.; Nitsche, H.; Pavan, J. R.; Stavsetra, L.; Stephens, F. S.; Wiedeking, M.; Wyss, R.; Xu, F. R. (6 March 2009)."Multi-quasiparticle states in Rf 256".Physical Review C.79 (3): 031303.Bibcode:2009PhRvC..79c1303J.doi:10.1103/PhysRevC.79.031303.ISSN 0556-2813. Retrieved16 June 2023.
  11. ^Heßberger, F. P.; Hofmann, S.; Ninov, V.; Armbruster, P.; Folger, H.; Münzenberg, G.; Schött, H. J.; Popeko, A. G.; Yeremin, A. V.; Andreyev, A. N.; Saro, S. (1 December 1997)."Spontaneous fission and alpha-decay properties of neutron deficient isotopes 257−253104 and 258106"(PDF).Zeitschrift für Physik A.359 (4):415–425.Bibcode:1997ZPhyA.359..415A.doi:10.1007/s002180050422.ISSN 1431-5831.S2CID 121551261. Retrieved16 June 2023.
  12. ^abAME 2020 atomic mass evaluation
  13. ^abHauschild, K.; Lopez-Martens, A.; Chakma, R.; Chelnokov, M. L.; Chepigin, V. I.; Isaev, A. V.; Izosimov, I. N.; Katrasev, D. E.; Kuznetsova, A. A.; Malyshev, O. N.; Popeko, A. G.; Popov, Yu. A.; Sokol, E. A.; Svirikhin, A. I.; Tezekbayeva, M. S.; Yeremin, A. V.; Asfari, Z.; Dorvaux, O.; Gall, B. J. P.; Kessaci, K.; Ackermann, D.; Piot, J.; Mosat, P.; Andel, B. (18 January 2022)."Alpha-decay spectroscopy of $$^{257}$$Rf".The European Physical Journal A.58 (1): 6.arXiv:2104.12526.doi:10.1140/epja/s10050-021-00657-8.ISSN 1434-601X.S2CID 233394478. Retrieved17 June 2023.
  14. ^Heßberger, F. P.; Antalic, S.; Mistry, A. K.; Ackermann, D.; Andel, B.; Block, M.; Kalaninova, Z.; Kindler, B.; Kojouharov, I.; Laatiaoui, M.; Lommel, B.; Piot, J.; Vostinar, M. (20 July 2016)."Alpha- and EC-decay measurements of 257Rf".The European Physical Journal A.52 (7): 192.doi:10.1140/epja/i2016-16192-0.ISSN 1434-601X.S2CID 254108438. Retrieved17 June 2023.
  15. ^Streicher, B.; Heßberger, F. P.; Antalic, S.; Hofmann, S.; Ackermann, D.; Heinz, S.; Kindler, B.; Khuyagbaatar, J.; Kojouharov, I.; Kuusiniemi, P.; Leino, M.; Lommel, B.; Mann, R.; Šáro, Š.; Sulignano, B.; Uusitalo, J.; Venhart, M. (1 September 2010)."Alpha-gamma decay studies of 261Sg and 257Rf"(PDF).The European Physical Journal A.45 (3):275–286.Bibcode:2010EPJA...45..275S.doi:10.1140/epja/i2010-11005-2.ISSN 1434-601X.S2CID 120939068. Retrieved17 June 2023.
  16. ^Berryman, J. S.; Clark, R. M.; Gregorich, K. E.; Allmond, J. M.; Bleuel, D. L.; Cromaz, M.; Dragojević, I.; Dvorak, J.; Ellison, P. A.; Fallon, P.; Garcia, M. A.; Gros, S.; Lee, I. Y.; Macchiavelli, A. O.; Nitsche, H.; Paschalis, S.; Petri, M.; Qian, J.; Stoyer, M. A.; Wiedeking, M. (29 June 2010)."Electromagnetic decays of excited states in Sg 261 ( Z = 106 ) and Rf 257 ( Z = 104 )".Physical Review C.81 (6): 064325.doi:10.1103/PhysRevC.81.064325.ISSN 0556-2813. Retrieved17 June 2023.
  17. ^Heßberger, F. P.; Antalic, S.; Ackermann, D.; Andel, B.; Block, M.; Kalaninova, Z.; Kindler, B.; Kojouharov, I.; Laatiaoui, M.; Lommel, B.; Mistry, A. K.; Piot, J.; Vostinar, M. (11 November 2016)."Investigation of electron capture decay of 258Db and $\alpha$decay of 258Rf".The European Physical Journal A.52 (11): 328.doi:10.1140/epja/i2016-16328-2.ISSN 1434-601X.S2CID 125302206. Retrieved18 June 2023.
  18. ^Lazarev, Yu. A.; Lobanov, Yu. V.; Oganessian, Yu. Ts.; Utyonkov, V. K.; Abdullin, F. Sh.; Polyakov, A. N.; Rigol, J.; Shirokovsky, I. V.; Tsyganov, Yu. S.; Iliev, S.; Subbotin, V. G.; Sukhov, A. M.; Buklanov, G. V.; Mezentsev, A. N.; Subotic, K.; Moody, K. J.; Stoyer, N. J.; Wild, J. F.; Lougheed, R. W. (13 November 2000)."Decay properties of 257 No , 261 Rf , and 262 Rf".Physical Review C.62 (6): 064307.Bibcode:2000PhRvC..62f4307L.doi:10.1103/PhysRevC.62.064307.ISSN 0556-2813. Retrieved17 June 2023.
  19. ^Sylwester, E. R.; Adams, J. L.; Lane, M. R.; Shaughnessy, D. A.; Wilk, P. A.; Hoffman, D. C.; Gregorich, K. E.; Lee, D. M.; Laue, C. A.; McGrath, C. A.; Strellis, D. A.; Kadkhodayan, B.; Tuerler, A.; Kacher, C. D. (1 July 2000)."On-line gas chromatographic studies of Rf, Zr, and Hf bromides".Radiochimica Acta.88 (12):837–844.doi:10.1524/ract.2000.88.12.837.S2CID 201281991. Retrieved17 June 2023.
  20. ^Henderson, Roger."Chemical and Nuclear Properties of Lawrencium (Element 103) and Hahnium (Element 105)"(PDF). University of California, Berkeley. Retrieved17 June 2023.
  21. ^Kadkhodayen, B.; Tuerler, A.; Gregorich, K. E.; Baisden, P. A.; Czerwinski, K. R.; Eichler, B.; Gaeggeler, H. W.; Hamilton, T. M.; Jost, D. T.; Kacher, C. D.; Kovacs, A.; Kreek, S. A.; Lane, M. R.; Mohar, M. F.; Neu, M. P.; Stoyer, N. J.; Sylwester, E. R.; Lee, D. M.; Nurmia, M. J.; Seaborg, G. T.; Hoffman, D. C. (1 August 1996)."On-line gas chromatographic studies of chlorides of rutherfordium and homologs Zr and Hf".Radiochimica Acta.72. Retrieved17 June 2023.
  22. ^Haba, H.; Kaji, D.; Kikunaga, H.; Kudou, Y.; Morimoto, K.; Morita, K.; Ozeki, K.; Sumita, T.; Yoneda, A.; Kasamatsu, Y.; Komori, Y.; Ooe, K.; Shinohara, A. (2011). "Production and decay properties of the 1.9-s isomeric state in261Rf".Physical Review C.83 (3): 034602.Bibcode:2011PhRvC..83c4602H.doi:10.1103/physrevc.83.034602.
  23. ^Gorshkov; et al."Measurements of 260-262Rf produced in 22Ne + 244Pu fusion reaction at TASCA"(PDF). GSI. Retrieved16 June 2023.
  24. ^Kacher, Christian D. (30 October 1995)."Chemical and nuclear properties of Rutherfordium (Element 104)". Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States).doi:10.2172/193914.OSTI 193914. Retrieved18 June 2023.{{cite journal}}:Cite journal requires|journal= (help)
  25. ^Oganessian, Yu. Ts.; Utyonkov, V. K.; Shumeiko, M. V.; Abdullin, F. Sh.; Adamian, G. G.; Dmitriev, S. N.; Ibadullayev, D.; Itkis, M. G.; Kovrizhnykh, N. D.; Kuznetsov, D. A.; Petrushkin, O. V.; Podshibiakin, A. V.; Polyakov, A. N.; Popeko, A. G.; Rogov, I. S.; Sagaidak, R. N.; Schlattauer, L.; Shubin, V. D.; Solovyev, D. I.; Tsyganov, Yu. S.; Voinov, A. A.; Subbotin, V. G.; Bublikova, N. S.; Voronyuk, M. G.; Sabelnikov, A. V.; Bodrov, A. Yu.; Aksenov, N. V.; Khalkin, A. V.; Gan, Z. G.; Zhang, Z. Y.; Huang, M. H.; Yang, H. B. (6 May 2024)."Synthesis and decay properties of isotopes of element 110: Ds 273 and Ds 275".Physical Review C.109 (5): 054307.doi:10.1103/PhysRevC.109.054307.ISSN 2469-9985. Retrieved11 May 2024.
  26. ^abcOganessian, Yu. Ts.; et al. (2007). "Synthesis of the isotope 282113 in the Np237+Ca48 fusion reaction".Physical Review C.76 (1): 011601.Bibcode:2007PhRvC..76a1601O.doi:10.1103/PhysRevC.76.011601.
  27. ^abcOganessian, Yuri (8 February 2012)."Nuclei in the "Island of Stability" of Superheavy Elements".Journal of Physics: Conference Series.337 (1): 012005.Bibcode:2012JPhCS.337a2005O.doi:10.1088/1742-6596/337/1/012005.
  28. ^ab"CERN Document Server: Record#831577: Chemical Identification of Dubnium as a Decay Product of Element 115 Produced in the Reaction 48Ca + 243Am". Cdsweb.cern.ch. Retrieved2010-09-19.
  29. ^abStock, Reinhard (13 September 2013).Encyclopedia of Nuclear Physics and its Applications. John Wiley & Sons.ISBN 9783527649266. Retrieved8 April 2018 – via Google Books.
  30. ^Fritz Peter Heßberger."Exploration of Nuclear Structure and Decay of Heaviest Elements at GSI - SHIP". agenda.infn.it. Retrieved2016-09-10.
  31. ^abBarber, Robert C.; Gäggeler, Heinz W.; Karol, Paul J.; Nakahara, Hiromichi; Vardaci, Emanuele; Vogt, Erich (2009)."Discovery of the element with atomic number 112 (IUPAC Technical Report)".Pure and Applied Chemistry.81 (7): 1331.doi:10.1351/PAC-REP-08-03-05.
  32. ^Armbruster, Peter & Munzenberg, Gottfried (1989). "Creating superheavy elements".Scientific American.34:36–42.
  33. ^Fleischmann, Martin; Pons, Stanley (1989). "Electrochemically induced nuclear fusion of deuterium".Journal of Electroanalytical Chemistry and Interfacial Electrochemistry.261 (2):301–308.doi:10.1016/0022-0728(89)80006-3.
  34. ^abcd"Discovery of the transneptunium elements",IUPAC/IUPAP Technical Report,Pure Appl. Chem., Vol. 65, No. 8, pp. 1757-1814,1993. Retrieved on 2008-03-04
  35. ^abGhiorso, A.; Nurmia, M.; Eskola, K.; Eskola, P. (1970). "261Rf; new isotope of element 104".Physics Letters B.32 (2):95–98.Bibcode:1970PhLB...32...95G.doi:10.1016/0370-2693(70)90595-2.
  36. ^Sylwester; Gregorich, K. E.; et al. (2000)."On-line gas chromatographic studies of Rf, Zr, and Hf bromides".Radiochimica Acta.88 (12_2000): 837.doi:10.1524/ract.2000.88.12.837.S2CID 201281991.
  37. ^Somerville, L. P.; Nurmia, M. J.; Nitschke, J. M.; Ghiorso, A.; Hulet, E. K.; Lougheed, R. W. (1985)."Spontaneous fission of rutherfordium isotopes".Physical Review C.31 (5):1801–1815.Bibcode:1985PhRvC..31.1801S.doi:10.1103/PhysRevC.31.1801.PMID 9952719.
  38. ^abcdKratz; Nähler, A.; et al. (2003)."An EC-branch in the decay of 27-s263Db: Evidence for the new isotope263Rf"(PDF).Radiochim. Acta.91 (1–2003):59–62.doi:10.1524/ract.91.1.59.19010.S2CID 96560109. Archived fromthe original(PDF) on 2009-02-25.
  39. ^abcdeGhiorso; et al. (1969)."Positive Identification of Two Alpha-Particle-Emitting Isotopes of Element 104".Phys. Rev. Lett.22 (24):1317–1320.Bibcode:1969PhRvL..22.1317G.doi:10.1103/physrevlett.22.1317.
  40. ^abLane; Gregorich, K.; et al. (1996). "Spontaneous fission properties of 104262Rf".Physical Review C.53 (6):2893–2899.Bibcode:1996PhRvC..53.2893L.doi:10.1103/PhysRevC.53.2893.PMID 9971276.
  41. ^abLazarev, Yu; et al. (2000). "Decay properties of 257No, 261Rf, and 262Rf".Physical Review C.62 (6): 64307.Bibcode:2000PhRvC..62f4307L.doi:10.1103/PhysRevC.62.064307.
  42. ^Gregorich, K. E.; et al. (2005)."Systematic Study of Heavy Element Production in Compound Nucleus Reactions with238U Targets"(PDF). LBNL annual report. Retrieved2008-02-29.
  43. ^Gates; Garcia, M. A.; et al. (2008)."Synthesis of rutherfordium isotopes in the238U(26Mg,xn)264−xRf reaction and study of their decay properties".Physical Review C.77 (3): 34603.Bibcode:2008PhRvC..77c4603G.doi:10.1103/PhysRevC.77.034603.S2CID 42983895.
  44. ^Oganessian, Yu. Ts.; Demin, A. G.; Il'inov, A. S.; Tret'yakova, S. P.; Pleve, A. A.; Penionzhkevich, Yu. É.; Ivanov, M. P.; Tret'yakov, Yu. P. (1975). "Experiments on the synthesis of neutron-deficient kurchatovium isotopes in reactions induced by50Ti Ions".Nuclear Physics A.38 (6):492–501.Bibcode:1975NuPhA.239..157O.doi:10.1016/0375-9474(75)91140-9.
  45. ^Heßberger, F. P.; Münzenberg, G.; et al. (1985). "Study of evaporation residues produced in reactions of207,208Pb with50Ti".Zeitschrift für Physik A.321 (2):317–327.Bibcode:1985ZPhyA.321..317H.doi:10.1007/BF01493453.S2CID 118720320.
  46. ^abcdefHeßberger, F. P.; Hofmann, S.; Ninov, V.; Armbruster, P.; Folger, H.; Münzenberg, G.; Schött, H. J.; Popeko, A. K.; Yeremin, A. V.; Andreyev, A. N.; Saro, S. (1997). "Spontaneous fission and alpha-decay properties of neutron deficient isotopes257−253104 and258106".Zeitschrift für Physik A.359 (4):415–425.Bibcode:1997ZPhyA.359..415A.doi:10.1007/s002180050422.S2CID 121551261.
  47. ^abcHeßberger, F. P.; Hofmann, S.; Ackermann, D.; Ninov, V.; Leino, M.; Münzenberg, G.; Saro, S.; Lavrentev, A.; Popeko, A. G.; Yeremin, A. V.; Stodel, Ch. (2001). "Decay properties of neutron-deficient isotopes256,257Db,255Rf,252,253Lr"]".European Physical Journal A.12 (1):57–67.Bibcode:2001EPJA...12...57H.doi:10.1007/s100500170039.S2CID 117896888.
  48. ^abHofmann, S. (2009). "Superheavy Elements".The Euroschool Lectures on Physics with Exotic Beams, Vol. III Lecture Notes in Physics. Vol. 764. Springer. pp. 203–252.doi:10.1007/978-3-540-85839-3_6.ISBN 978-3-540-85838-6.
  49. ^Oganessian, Yu. Ts.; Utyonkov, V.; Lobanov, Yu.; Abdullin, F.; Polyakov, A.; Shirokovsky, I.; Tsyganov, Yu.; Gulbekian, G.; Bogomolov, S.; Gikal, B. N.; et al. (2004)."Measurements of cross sections and decay properties of the isotopes of elements 112, 114, and 116 produced in the fusion reactions233,238U,242Pu, and248Cm+48Ca"(PDF).Physical Review C.70 (6): 064609.Bibcode:2004PhRvC..70f4609O.doi:10.1103/PhysRevC.70.064609.
  50. ^Oganessian, Yuri (2007). "Heaviest nuclei from 48Ca-induced reactions".Journal of Physics G: Nuclear and Particle Physics.34 (4):R165 –R242.Bibcode:2007JPhG...34R.165O.doi:10.1088/0954-3899/34/4/R01.
  51. ^abEllison, P.; Gregorich, K.; Berryman, J.; Bleuel, D.; Clark, R.; Dragojević, I.; Dvorak, J.; Fallon, P.; Fineman-Sotomayor, C.; et al. (2010)."New Superheavy Element Isotopes:242Pu(48Ca,5n)285114{\displaystyle ^{242}Pu(^{48}Ca,5n)^{285}114}".Physical Review Letters.105 (18): 182701.Bibcode:2010PhRvL.105r2701E.doi:10.1103/PhysRevLett.105.182701.PMID 21231101.
  52. ^Oganessian, Yury Ts; Dmitriev, Sergey N (2009). "Superheavy elements in D I Mendeleev's Periodic Table".Russian Chemical Reviews.78 (12):1077–1087.Bibcode:2009RuCRv..78.1077O.doi:10.1070/RC2009v078n12ABEH004096.S2CID 250848732.
  53. ^Krebs, Robert E. (2006).The history and use of our earth's chemical elements: a reference guide. Greenwood Publishing Group. p. 344.ISBN 978-0-313-33438-2. Retrieved2010-09-19.
  54. ^Hofmann, S. (2009). "Superheavy Elements".The Euroschool Lectures on Physics with Exotic Beams, Vol. III Lecture Notes in Physics. Vol. 764. Springer. p. 229.doi:10.1007/978-3-540-85839-3_6.ISBN 978-3-540-85838-6.
  55. ^abHeßberger, F. P.; Antalic, S.; Ackermann, D.; Andel, B.; Block, M.; Kalaninova, Z.; Kindler, B.; Kojouharov, I.; Laatiaoui, M.; Lommel, B.; Mistry, A. K.; Piot, J.; Vostinar, M. (2016). "Investigation of electron capture decay of258Db and α decay of258Rf".The European Physical Journal A.52 (11).doi:10.1140/epja/i2016-16328-2.ISSN 1434-6001.
  56. ^abDressler, R.; Türler, A.Evidence for isomeric states in261Rf(PDF) (Report). PSI Annual Report 2001. Archived fromthe original(PDF) on 2011-07-07. Retrieved2008-01-29.
  57. ^Somerville, L. P.; Nurmia, M. J.; Nitschke, J. M.; Ghiorso, A.; Hulet, E. K.; Lougheed, R. W. (1985-05-01). "Spontaneous fission of rutherfordium isotopes".Physical Review C.31 (5):1801–1815.Bibcode:1985PhRvC..31.1801S.doi:10.1103/PhysRevC.31.1801.ISSN 0556-2813.PMID 9952719.
  58. ^Dvorak, J.; Brüchle, W.; Chelnokov, M.; Düllmann, Ch. E.; Dvorakova, Z.; Eberhardt, K.; Jäger, E.; Krücken, R.; Kuznetsov, A.; Nagame, Y.; Nebel, F.; Nishio, K.; Perego, R.; Qin, Z.; Schädel, M.; Schausten, B.; Schimpf, E.; Schuber, R.; Semchenkov, A.; Thörle, P.; Türler, A.; Wegrzecki, M.; Wierczinski, B.; Yakushev, A.; Yeremin, A. (2008-04-03). "Observation of the 3 n Evaporation Channel in the Complete Hot-Fusion Reaction26Mg +248Cm Leading to the New Superheavy Nuclide271Hs".Physical Review Letters.100 (13): 132503.doi:10.1103/PhysRevLett.100.132503.ISSN 0031-9007.PMID 18517941.
  59. ^abcFritz Peter Heßberger."Exploration of Nuclear Structure and Decay of Heaviest Elements at GSI - SHIP". agenda.infn.it.Archived from the original on 2016-09-18. Retrieved2016-09-10.
  60. ^Oganessian, Yu. Ts.; Utyonkov, V. K.; Ibadullayev, D.; et al. (2022). "Investigation of48Ca-induced reactions with242Pu and238U targets at the JINR Superheavy Element Factory".Physical Review C.106 (24612): 024612.Bibcode:2022PhRvC.106b4612O.doi:10.1103/PhysRevC.106.024612.OSTI 1883808.S2CID 251759318.
  61. ^Dmitriev, S N; Eichler, R; Bruchertseifer, H; Itkis, M G; Utyonkov, V K; Aggeler, H W; Lobanov, Yu V; Sokol, E A; Oganessian, Yu T; Wild, J F; Aksenov, N V; Vostokin, G K; Shishkin, S V; Tsyganov, Yu S; Stoyer, M A; Kenneally, J M; Shaughnessy, D A; Schumann, D; Eremin, A V; Hussonnois, M; Wilk, P A; Chepigin, V I (15 October 2004)."Chemical Identification of Dubnium as a Decay Product of Element 115 Produced in the Reaction48Ca+243Am".CERN Document Server.Archived from the original on 25 March 2019. Retrieved5 April 2019.
  62. ^Stock, Reinhard (13 September 2013).Encyclopedia of Nuclear Physics and its Applications. John Wiley & Sons. p. 305.ISBN 978-3-527-64926-6.OCLC 867630862.
  63. ^Streicher, B.; et al. (2010). "Alpha-gamma decay studies of 261Sg and 257Rf".The European Physical Journal A.45 (3):275–286.Bibcode:2010EPJA...45..275S.doi:10.1140/epja/i2010-11005-2.S2CID 120939068.
  64. ^Barber, R. C.; Gaeggeler, H. W.; Karol, P. J.; Nakahara, H.; Vardaci, E; Vogt, E. (2009)."Discovery of the element with atomic number 112"(IUPAC Technical Report).Pure Appl. Chem.81 (7): 1331.doi:10.1351/PAC-REP-08-03-05.S2CID 95703833.
  65. ^Qian, J.; et al. (2009). "Spectroscopy of Rf257".Physical Review C.79 (6): 064319.Bibcode:2009PhRvC..79f4319Q.doi:10.1103/PhysRevC.79.064319.
  66. ^Jeppesen; Dragojević, I.; et al. (2009). "Multi-quasiparticle states in256Rf".Physical Review C.79 (3): 031303(R).Bibcode:2009PhRvC..79c1303J.doi:10.1103/PhysRevC.79.031303.

External links

[edit]
Group12 3456789101112131415161718
PeriodHydrogen and
alkali metals
Alkaline
earth metals
Pnicto­gensChal­co­gensHalo­gensNoble gases
12
345678910
1112131415161718
192021222324252627282930313233343536
373839404142434445464748495051525354
55561 asterisk71727374757677787980818283848586
87881 asterisk103104105106107108109110111112113114115116117118
119120
1 asterisk5758596061626364656667686970 
1 asterisk8990919293949596979899100101102
Retrieved from "https://en.wikipedia.org/w/index.php?title=Isotopes_of_rutherfordium&oldid=1270849341#Rutherfordium-267"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp