Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Russulaceae

Featured article
From Wikipedia, the free encyclopedia
Family of fungi in the order Russulales

Russulaceae
"Russula emetica"
Russula emetica
Scientific classificationEdit this classification
Kingdom:Fungi
Division:Basidiomycota
Class:Agaricomycetes
Order:Russulales
Family:Russulaceae
Lotsy (1907)[1]
Type genus
Russula
Pers. (1796)
Genera

1includingArcangeliella,Gastrolactarius, andZelleromyces
2includingCystangium,Gymnomyces,Elasmomyces,Martellia, andMacowanites

Synonyms[2][3]

TheRussulaceae are a diversefamily of fungi in the orderRussulales, with roughly 1,900 knownspecies and a worldwide distribution. They comprise thebrittlegills and themilk-caps, well-knownmushroom-forming fungi that include someedible species. Thesegilled mushrooms are characterised by the brittleflesh of theirfruitbodies.

In addition to these typicalagaricoid forms, the family contains species with fruitbodies that are laterally striped (pleurotoid), closed (secotioid orgasteroid), or crust-like (corticioid).Molecular phylogenetics has demonstrated close affinities between species with very different fruitbody types and has discovered new, distinctlineages.

An important group of root-symbioticectomycorrhizal fungi in forests and shrublands around the world includesLactifluus,Multifurca,Russula, andLactarius. The crust-forming generaBoidinia,Gloeopeniophorella, andPseudoxenasma, allwood-decay fungi, havebasal positions in the family.

Taxonomy

[edit]

The family Russulaceae was firstvalidly named in 1907 by Dutch botanistJohannes Paulus Lotsy,[4] who included three genera:Russula,Lactarius, andRussulina (now considered a synonym ofRussula). He emphasised features such as the granularflesh, thick gills, spinyspores, and milkyhyphae and rounded cells (sphaerocytes).[1] A prior usage of "Russulariées" by French mycologistErnst Roze in 1876[5] is not considered a valid publication, since the proper Latin termination for the family rank specified in article 18.4 of thenomenclature code was not used.[4][6]

Synonyms of Russulaceae include:Ernst Albert Gäumann's Lactariaceae (1926),Fernand Moreau's Asterosporaceae (1953),[2] andDavid Pegler and Thomas Young's Elasmomycetaceae (1979). The latter family was proposed to contain species with statismosporic (non-forcibly discharged) and symmetric spores, including the gasteroid generaElasmomyces,Gymnomyces,Martellia, andZelleromyces. Calonge and Martín reduced the Elasmomycetaceae to synonymy with the Russulaceae when molecular analysis confirmed the close genetic relationship between the gasteroid and agaricoid genera.[3]

Placement of the family

[edit]

Historically, thegilled mushrooms of the family Russulaceae were classified with other gilled species in the orderAgaricales,[7] but microscopical studies of spore and fruitbody flesh features raised the possibility that they were more closely related with certain "lower fungi" presenting nongilled,crust-like fruitbodies.[2][8][9] The use ofmolecular phylogenetics confirmed that these morphologically diverse fungi form a distinct lineage, first termed the "russuloidclade"[10][11] and today classified as orderRussulales in the classAgaricomycetes.[12] The family'ssister group within the order appears to be the crust-likeGloeocystidiellaceae.[13]

Internal systematics

[edit]
Phylogeny of the Russulaceae; dashed lines indicate uncertain placement.[10][13][14][15]

A 2008 molecular phylogenetic study clarified the relationships among the mushroom-forming species of the family.[15] The authors demonstrated the existence of four distinct lineages of gilled mushrooms, which led to the description ofMultifurca as a new genus separated fromRussula[15] and the segregation ofLactifluus fromLactarius.[16][17]

Genera with closed fruitbodies within the family areform taxa instead of natural groups:Arcangeliella,Gastrolactarius, andZelleromyces are phylogenetically part ofLactarius, whileCystangium,Elasmomyces,Gymnomyces,Macowanites, andMartellia belong toRussula.[3][16] Nevertheless, some of these genus names are still in use, as many of the concerned species have not yet formally been synonymised withLactarius orRussula.[18]

The crust-like generaBoidinia,Gloeopeniophorella, andPseudoxenasma, formerly placed in theCorticiaceae or Gloeocystidiellaceae, are now classified in the Russulaceae and basal to the clade of mushroom-forming species described above.[13][18] Studies have so far failed to clearlycircumscribe and place these genera within the family.[10][13][14]Boidinia in its current extent ispolyphyletic, with some species not falling into the Russulaceae.[10]

Species diversity

[edit]

Altogether, the Russulaceae comprise around 1,900 accepted species.[18]Russula is by far the largest genus with c. 1,100 species,Lactarius has c. 550,Lactifluus c. 120,Boidinia 13,Multifurca 6,Gloeopeniophorella 6, andPseudoxenasma 1 species.[18][19] Closed-fruitbody species not yet synonymised withLactarius orRussula (see above) account for some 150 species.[18]

New species in the Russulaceae continue to be described from various regions, such as the US,[20] Guyana,[21] Brazil,[22] Patagonia,[23] Togo,[24] Sri Lanka,[25] or Thailand.[25] It has been estimated that the real number ofRussula species in North America alone (currently around 400 described) might be as high as 2000.[26]Cryptic species may increase true diversity: some morphologically well-defined species, especially inLactifluus, have been shown to actually encompass several phylogenetic species.[27][28][29]

Description

[edit]

Macroscopic characteristics

[edit]
Comparison of brittle flesh texture in Russulaceae and the more fibrous flesh found in most other fungi

Three major types offruitbodies occur in the Russulaceae:agaricoid andpleurotoid forms with acap,gills, and astipe; forms with closed (gasteroid) or partially closed (secotioid) fruitbodies, andcorticioid, crust-like forms.

Theagaricoid species inLactarius,Lactifluus,Multifurca, andRussula are readily distinguished from other gilled mushrooms by the consistency of their flesh, which is granular, brittle and breaks easily, somewhat like a piece of chalk.[1][30] Russulaceae never have avolva,[30] but apartial veil can be found in some tropical species.[31][32] Gills areadnate todecurrent, and the colour of thespore print ranges from white to ochre or orange[15][33] (with the brown-sporedLactarius chromospermus as an exception).[34]

Caps can be dull to very colourful, the latter especially inRussula;[33] their size ranges from 17 mm diameter or less inRussula campinensis[35] to 30 cm (12 in) inLactifluus vellereus.[33] Concentrically ringed (zonate) caps occur in allMultifurca[15] and severalLactarius species.[33] Laterally striped (pleurotoid) fruitbodies exist in some, mainly tropicalLactifluus andRussula species.[35][36][37][38] Taste is a distinguishing characteristic in many species, from mild to very acrid.[33] A conspicuous feature of the "milk-caps" inLactarius, Lactifluus, andMultifurca furcata is thelatex or "milk" their fruitbodies exude when bruised.[15][30]

Thesecotioid andgasteroid species inLactarius andRussula are derived from agaricoid forms.[15][39] Secotioid species still have a stipe but the cap does not open fully, while in gasteroid species, fruitbodies are completely closed and the stipe is reduced; in both cases, the spore-bearing structure is made up of convoluted gills that are more or less crowded andanastomosed.[39] These closed-fruitbody species represent a continuum of secotioid to gasteroid,above-ground tobelow-ground fruitbodies, with spores forcibly discharged or not.[25][39][40] Secotioid or gasteroidLactarius exude latex just like their agaricoid relatives.[3][25][40]

Thecorticioid species ofBoidinia,Gloeopeniophorella, andPseudoxenasma develop crust-like fruitbodies with a smooth, porous, or flaky surface and grow on tree logs or dead branches.[10][41][42][43]

Morphological variety of Russulaceae

Microscopic characteristics

[edit]
Microscopical picture showing round shapes with rough, dark blue ridged textures
Spores ofLactarius rubidus, showing ornamentation with a blue, amyloid stain reaction that is typical for Russulaceae

All Russulaceae, including the corticioid species, are characterised by spherical to ellipticbasidiospores with a faint to very distinct (e.g. warty, spiny, or crested) ornamentation thatstains bluish-black withMelzer's reagent (anamyloid stain reaction).[10][30]Basidia (spore-bearing cells) are usually club-shaped and four-spored.[44] Russulaceae species do not haveclamp connections.[45]

Characteristic cells with an oily content (gloeocystidia) are found in thehymenium. In Russulaceae, these show a positive colour reaction when treated with sulfoaldehydes (sulfovanillin is mostly used).[10][30] They are also present in the hyphal sheath of ectomycorrhizal roots colonised by Russulaceae.[14]

The feature responsible for the brittle fruitbody structure in the mushroom-forming species are globular cells, calledsphaerocytes orsphaerocysts, that compose the flesh (trama) alongside the usualhyphae.[30] Sometimes, these cells are clustered, and the position and arrangement of these clusters differs among genera.[30]

Another particular trama cell type arelactiferous hyphae (alsolactifers). These are hyphae carrying the "milk" or "latex" exuded by themilk-caps; they react positively with sulfoaldehydes, form an abundantly branched system in the trama and end aspseudocystidia in the hymenium.[30] In general, onlyLactarius,Lactifluus andMultifurca furcata possess lactifers.[15] InRussula, similar hyphae can sometimes be observed in the trama, but these are not as abundantly branched as real lactifers and do not extend into the hymenium as pseudocystidia.[30] This traditional distinction line between the "milk-caps" andRussula is however less evident in some tropical species presenting intermediate states.[36]

Genera distinction

[edit]
View showing cap surface of an ochre mushroom with darker, concentrical rings
UnidentifiedMultifurca species
Zonate caps are a feature of several species of Russulaceae inLactarius andMultifurca.

Some characteristics of the mushroom-forming genera (marked with * below) can be less obvious or absent in tropical species.[15][36] Distinguishing betweenLactarius andLactifluus based on morphology alone is quite difficult, as clearsynapomorphies for both genera have yet to be identified.[17] Most field guides treat the two genera together, often becauseLactifluus is not yet recognised as a separate genus.[33][46]

  • Boidinia: corticioid; loose texture; surface smooth, with pores, or flaky; spores spherical with spiny to warty ornamentation.[10][41] Note that the genus is polyphyletic and needs to be redefined.[10]
  • Gloeopeniophorella: corticioid; surface almost smooth; hyphae without clamp connections; thick-walled cystidia (metuloids) and gloeocystidia present; spores with wrinkled (rugose) ornamentation.[43]
  • Lactarius: agaricoid or gasteroid; exuding latex*; caps sometimes zonate, viscose or glutinate, but never annulate; rarely thick-walled cells in cuticles of the cap (pileipellis) and the stipe (stipitipellis) and sphaerocytes in the gills.[15][17]
  • Lactifluus: agaricoid or pleurotoid; exuding latex*; caps never zonate, viscose or glutinate, but sometimes annulate; thick-walled cells in cap and stipe cuticles; often sphaerocytes in the gill trama.[15][17]
  • Multifurca: agaricoid; caps zonate (also visible in cut through trama); gills regularly forked; onlyM. furcata exuding latex; spore print orange; spores very small; microscopical trama and hymenium features very variable.[15]
  • Pseudoxenasma: corticioid; wax-like texture; gloeocystidia with spherical apical appendices; basidia developing laterally on hyphae (pleurobasidia); spores broadly ellipsoid to roughly spherical, with warty ornamentation.[42]
  • Russula: agaricoid, gasteroid or pleurotoid; never exuding latex; caps often brightly coloured with stipe and gills much paler; caps not zonate*; spore print white, cream, ochre, or orange; no true lactiferous hyphae*; sphaerocytes abundant in gill, cap, and stipe trama.[15][30]

Distribution

[edit]

The Russulaceae as a whole have a worldwide distribution, but patterns differ among genera.Russula is the most widespread, found in North,[47][48] Central[49][50] and South America,[32][51] Europe,[33] temperate[52][53] and tropical Asia,[54][55] Africa,[56] and Australasia.[36][57][58] It is the only Russulaceae genus that occurs in theNothofagus zone of temperate South America.[59]

Lactarius is mainly known from the north temperate zone, but some species also occur in tropical Asia and Africa.[17]Lactifluus has a more tropical distribution thanLactarius, with most species known from tropical Africa, Asia, South America, and Australasia, but some also occurring in the north temperate zone.[17]Multifurca is the rarest among the four mushroom genera, known only from some punctual records in North and Central America, Asia, and Australasia.[15][19]

Species ofLactarius,Lactifluus, andRussula have repeatedly beenintroduced with trees outside their native range: An overview article lists introductions in Chile, Argentina, Uruguay, Brazil, the US, Great Britain, the Faroe Islands, South Africa, China, Thailand, and New Zealand.[60]

Among the corticioid genera,Pseudoxenasma is only known from Europe.[61] In contrast,Boidinia species have been found in Europe,[62] Taiwan,[63] and Japan,[41] andGloeopeniophorella species in North America,[64] South America,[43][65] Europe,[66] West Africa,[65] Taiwan,[63] Australia,[43] and New Zealand.[43]

Ecology

[edit]

Ectomycorrhizal symbiosis

[edit]
Landscape in an arctic setting with small trees and shrubs and ponds, at sunset
Arctictundra, Canada
Dry, open woodland with mid-sized trees and high grass
Miombo woodland, Malawi
Ectomycorrhizal Russulaceae are found in a wide variety of habitats ranging from high latitudes to the tropics.

The generaLactarius,Lactifluus,Multifurca andRussula form a mutualisticectomycorrhizal rootsymbiosis with trees and shrubs, exchanging mineral nutrients forphotosynthetic sugar. They are one of several fungal lineages that have evolved such a lifestyle and are sometimes referred to as the "/russula-lactarius" clade in the scientific literature.[67] Worldwide, they are one of the most frequently encountered lineages on ectomycorrhizal roots.[68] While some tropical species were initially believed to be parasitic, the observation that species fruiting on tree trunks do form ectomycorrhiza in tropical Guyana supports the view of an exclusively symbiotic lineage.[35]

Associations are known with several plant families. In the Northern Hemisphere, these are essentially the well-known ectomycorrhizal trees and shrubs in theBetulaceae,Fagaceae,Pinaceae andSalicaceae,[33][46] but in arctic and alpine habitats, Russulaceae also associate withBistorta vivipara (Polygonaceae),[69]Kobresia (Cyperaceae),[70] andDryas octopetala (Rosaceae),[71] ectomycorrhizal plants untypic in their respective families. In the tropics, known plant partners includeDipterocarpaceae,[55][72]Fabaceae,[35][72]Nyctaginaceae,[73][74]Phyllanthaceae,[72] Polygonaceae (Coccoloba),[74]Sarcolaenaceae,[75] and the gymnospermGnetum gnemon,[76] and in the Southern Hemisphere,Nothofagaceae,[58][59][77] Myrtaceae (Eucalyptus[57] andLeptospermum),[58][77] and Rhamnaceae (Pomaderris).[78] Some Russulaceae are quite specialised in their ectomycorrhizal symbiosis, such asLactarius andRussula species that only grow withCistus shrubs in the Mediterranean basin.[79]

The different plant partners are reflected in the wide variety of habitats worldwide.[80] Ectomycorrhizal Russulaceae have been observed in arctic and alpinetundra,[69]boreal and alpine forest,[52][81]north temperate forest,[33][46]mires,[82] mediterranean forests and scrub (maquis),[79][83]miombo woodland,[56]tropical lowland rainforest,[55][74]tropical cloud forest,[84]tropical dry forest,[85] Australianeucalypt woodlands,[86] and south temperate forests.[59][77][78] Where they are introduced, they typically grow in plantations of their native host species, e.g. withpine in South Africa,[87]Eucalyptus in Thailand,[88] orbirch in New Zealand.[77]

Other types of mycorrhiza

[edit]
Club-shaped, crowded root-tips of a plant with its violet stem emerging in the middle
Root tips of the myco-heterotrophic plantMonotropa uniflora, with a mycorrhizal sheath formed byRussula brevipes

Some of the ectomycorrhizal Russulaceae are also involved in other types of root symbioses with plants.

A mutualistic association similar to ectomycorrhiza but with some hyphae penetrating into the plant root cells, termedarbutoid mycorrhiza,[89] is formed by Russulaceae with shrubs of the generaArbutus[83] andArctostaphylos,[90] both in subfamilyArbutoideae of theEricaceae.[83][90]

Some Russulaceae are associated withmyco-heterotrophic plants of the Ericaceae subfamilyMonotropoideae, formingmonotropoid mycorrhiza.[91][92] This is anepiparasitic relationship, where the heterotrophic plant ultimately derives its carbon from the primary, ectomycorrhizal plant partner of the fungus.[92] The association is often very specific, with the heterotrophic plants only associating with selected fungus partners, including Russulaceae.[91][93]

Russulaceae are also an important group oforchid mycorrhizal fungi.[94] This symbiosis is mutualistic in the case of green orchids,[89] but a partly or fully epiparasitic relationship in the case of myco-heterotrophic[95][96] andmixotrophic[97] orchids, respectively. In some cases, the association with Russulaceae is, as in monotropoid mycorrhiza, very specific: the Mediterranean orchidLimodorum abortivum predominantly associates withRussula delica and closely related species;[97] inCorallorhiza maculata, different genotypes of the same species have distinctRussula partners.[95]

Wood decay species

[edit]

The corticioid species inBoidinia,Gloeopeniophorella, andPseudoxenasma aresaprotrophic,wood-degrading fungi that develop ondead wood.[10] Their early-branching positions in the phylogeny suggests this has been the ancestral trophic mode of the Russulaceae, and that the mycorrhizal lifestyle(see above) evolved later.[10] The saprotrophic nature of these species has been questioned, based on the observation that other inconspicuous, crust-forming fungi are ectomycorrhizal;[14] a subsequent author reaffirms nevertheless that "[n]one of the corticioid species in the family shows any sign of mycorrhizal activity."[13]

Hypogeous fruiting

[edit]

Hypogeous fruitbodies, or fruitbodies developing below ground, occur inLactarius andRussula and have previously been considered as distinct genera (seeSystematics and taxonomy: Internal systematics). As such species are especially diverse in some warm and dry regions, e.g. in Spain,[3] California,[98] or Australia,[57] below-ground fruiting has been interpreted as an adaptation to drought.[39] However, hypogeous Russulaceae are also known from cold temperate regions[23][99] and tropical rainforest.[25] The fact that hypogeous species in the Russulaceae do not form their own lineages but are scattered inRussula orLactarius shows that this type of fruiting evolved several times.[25] It is believed that these changes are evolutionarily quite recent.[25]

Parasites

[edit]
A population of small, cream-coloured, gilled mushrooms growing on a black, old and partly degraded bigger mushroom
Asterophora parasitica grows on rotting Russulaceae fruitbodies.

Russulaceae fruitbodies are subject toparasitisation by other fungi. The genusAsterophora develops on old fruitbodies of the mushroom species in the family,[46] as doesDendrocollybia racemosa on at leastRussula crassotunicata.[100] Fruitbodies ofLactifluus orRussula species otherwise hot-tasting and unpalatable are regarded as choice edibles in North America when infected by the "lobster mushroom"Hypomyces lactifluorum.[46] Heterotrophic plants, includingorchids ormonotropoids, also parasitise ectomycorrhizal Russulaceae and their plant partners – see above,Other types of mycorrhiza.

Threats and conservation

[edit]

As with most fungi,[101] little information is available on the threat of extinction for Russulaceae species, and they have not been assessed in theInternational Union for the Conservation of Nature's Red List.[102] However, national lists contain some species ofLactarius,Lactifluus andRussula, indicating that they have small populations and are endangered, e.g. in Great Britain,[103] Switzerland,[104] the Czech Republic,[105] and New Zealand.[106]

Although data on Russulaceae themselves are scarce, more is known about the habitats they occur in, especially for the ectomycorrhizal species which depend on their host plants: Several of these habitats are affected by loss or degradation, such as peatlands,[107] Mediterranean forests and scrub[108] or tropical African dry woodland.[109] Similarly, dead wood, the habitat of the corticioid Russulaceae, is rare in many exploited forests and needs special management.[110]

Recent studies have found some traditional Russulaceae species to comprise several cryptic species (seeSystematics and taxonomy: Species diversity). This may imply that distribution range and population size for each of such distinct species are smaller than previously thought.[111]

Edibility

[edit]
Fruitbodies of two mushroom species, one blue and one orange, are presented on large plant leaves
Lactarius indigo and anotherLactarius species for sale on a market in Guatemala

Several species ofLactarius,Lactifluus andRussula are valued as excellent edible mushrooms. This is the case for example for the north temperate speciesLactarius deliciosus,Lactifluus volemus, orRussula vesca, and other species are popular in other parts of the world, e.g.Lactarius indigo in Mexico, orLactifluus edulis in tropical Africa.[112] Some species, likeRussula vesca, can even be eaten raw.[113] The brittle texture ofRussula fruitbodies makes them different from other mushrooms and is not appreciated by some.[114]

Several species have a hot to very acrid taste and can causegastrointestinal symptoms.[115] Despite this, such species are eaten in some regions, e.g.Lactarius torminosus in Finland[116] or Russia.[117] Often, they areparboiled orpickled to make them palatable,[118] and sometimes, they are used as spice, for exampleRussula emetica in Eastern Europe.[119] Some species are however trulypoisonous: the East Asian and North AmericanRussula subnigricans causesrhabdomyolysis and is potentially lethal,[120] andLactarius turpis from Eurasia contains amutagenic substance.[121]

Cultivation of edible Russulaceae, as in other ectomycorrhizal fungi, is challenging, since the presence of host trees is required. In spite of this difficulty, the EuropeanLactarius deliciosus has been successfully grown in "mushroom orchards" in New Zealand.[122]

Chemistry

[edit]
The finger of a hand are holding a light blue mushroom. On the tip of the thumb is a bright-blue colored substance somewhat resembling paint. Two fingertip-sized areas on the under surface of the mushroom have a dark blue discoloration.
Lactarius indigo contains a striking blue pigment.

Fruitbodies of Russulaceae have been the subject ofnatural product research, and different classes of organic compounds have been isolated from them.

Aroma compounds are responsible for the particular odour or taste in some species, e.g.sotolon in thefenugreek-smellingLactarius helvus,[123] or the similarquabalactone III inLactarius rubidus which causes a maple syrup-like odor in dried specimens.[124]Pigments have been isolated from brightly coloured species, e.g. (7-isopropenyl-4-methylazulen-1-yl)methyl stearate from the blueLactarius indigo[125] orrussulaflavidin and a derivative from the yellowRussula flavida.[126] SomeRussula species contain pigmentedpteridine derivatives calledrussupteridines that are not found in the milk-caps.[127]Sesquiterpenes are characteristic secondary metabolites of many Russulaceae, especially milk-caps which have been quite intensively studied.[128][129] They are thought to be responsible for the hot taste in many species and may have deterrent, antifeeding functions in nature.[128]

Other metabolites isolated from different species include dibenzonaphtyridinonealkaloids,[128]prenylatedphenols,[128]benzofurans,[128]chromenes,[128] natural rubber (polyisoprene),[130]sterols,[131] and the sugar alcoholvolemitol.[132] Among toxic substances,Lactarius turpis contains the mutagenic alkaloidnecatorin,[121] and the small compoundcycloprop-2-ene carboxylic acid has been identified as the toxic agent inRussula subnigricans.[133] Some secondary metabolites showed antibiotic properties in laboratory tests.[128] An ethanolic extract ofRussula delica was antibacterial,[134] and alectin fromRussula rosea showed antitumor activity.[135]

References

[edit]
  1. ^abcLotsy JP (1907).Vorträge über botanische Stammesgeschichte [Lectures on botanical phylogeny, held at the Imperial University of Leiden] (in German). Jena, Germany: Gustav Fischer. pp. 708.Open access icon
  2. ^abcPegler DN, Young TW (1979)."The gasteroid Russulales".Transactions of the British Mycological Society.72 (3):353–388.Bibcode:1979TrBMS..72..353P.doi:10.1016/S0007-1536(79)80143-6.
  3. ^abcdeCalonge FD, Martín MP (2000)."Morphological and molecular data on the taxonomy ofGymnomyces,Martellia andZelleromyces (Elasmomycetaceae, Russulales)"(PDF).Mycotaxon.76:9–15.Open access icon
  4. ^ab"Russulaceae Lotsy, Truffe, ed. 2: 708 (1907)".MycoBank. International Mycological Association. Retrieved2014-12-28.
  5. ^Roze ME (1876)."Catalogue des agaricinées observées aux environs de Paris" [Catalogue of agarics observed around Paris].Bulletin de la Société Botanique de France (in French).23 (3): 108–115 (see p. 110).Bibcode:1876BSBF...23..108R.doi:10.1080/00378941.1876.10825634.
  6. ^McNeill J, Barrie FR, Buck WR, Demoulin V, eds. (2012)."Article 18.4".International Code of Nomenclature for algae, fungi, and plants (Melbourne Code), adopted by the Eighteenth International Botanical Congress Melbourne, Australia, July 2011 (electronic ed.). Bratislava: International Association for Plant Taxonomy.Open access icon
  7. ^Singer R (1986).The Agaricales in Modern Taxonomy (4th ed.). Königstein im Taunus, Germany: Koeltz Scientific Books.ISBN 978-3-87429-254-2.
  8. ^Donk MA (1971)."Progress in the study of the classification of the higher Basidiomycetes". In Petersen RH (ed.).Evolution in the Higher Basidiomycetes. Knoxville. pp. 3–25.ISBN 9780870491092.OCLC 139485.
  9. ^Oberwinkler F (1977). "Das neue System der Basidiomyceten" [The new basidiomycete system]. In Frey W, Hurka H, Oberwinkler F (eds.).Beiträge zur Biologie der niederen Pflanzen (in German). Stuttgart; New York: Gustav Fischer Verlag. pp. 59–104.ISBN 978-3-437-30262-6.
  10. ^abcdefghijkLarsson E, Larsson KH (2003)."Phylogenetic relationships of russuloid basidiomycetes with emphasis on aphyllophoralean taxa".Mycologia.95 (6):1037–65.doi:10.2307/3761912.JSTOR 3761912.PMID 21149013.Open access icon
  11. ^Hibbett DH, Thorn RG (2001). "Basidiomycota: Homobasidiomycetes". In McLaughlin DJ, McLaughlin EG, Lemke PA (eds.).The Mycota. VIIB. Systematics and Evolution. Berlin: Springer-Verlag. pp. 121–168.ISBN 978-3-540-58008-9.
  12. ^Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF, Eriksson OE, et al. (May 2007)."A higher-level phylogenetic classification of the Fungi"(PDF).Mycological Research.111 (Pt 5):509–47.CiteSeerX 10.1.1.626.9582.doi:10.1016/j.mycres.2007.03.004.PMID 17572334.S2CID 4686378. Archived fromthe original(PDF) on 2009-03-26.
  13. ^abcdeLarsson KH (September 2007). "Re-thinking the classification of corticioid fungi".Mycological Research.111 (Pt 9):1040–63.doi:10.1016/j.mycres.2007.08.001.PMID 17981020.
  14. ^abcdMiller SL, Larsson E, Larsson KH, Verbeken A, Nuytinck J (2006). "Perspectives in the new Russulales".Mycologia.98 (6):960–70.doi:10.3852/mycologia.98.6.960.PMID 17486972.
  15. ^abcdefghijklmnBuyck B, Hofstetter V, Eberhardt U, Verbeken A, Kauff F (2008)."Walking the thin line betweenRussula andLactarius: The dilemma ofRussula sect.Ochricompactae"(PDF).Fungal Diversity.28:15–40.
  16. ^abBuyck B, Hofstetter V, Verbeken A, Walleyn R (2010)."Proposal to conserveLactarius nom. cons. (Basidiomycota) with conserved type".Taxon.59:447–453.doi:10.1002/tax.591031.Open access icon
  17. ^abcdefVerbeken A, Nuytinck J (2013)."Not every milkcap is aLactarius"(PDF).Scripta Botanica Belgica.51:162–168.
  18. ^abcdeKirk PM."Species Fungorum (version October 2014). In: Species 2000 & ITIS Catalogue of Life". Species 2000 & ITIS. Archived fromthe original on 2020-05-13. Retrieved2014-10-30.
  19. ^abLebel T, Dunk CW, May TW (2013). "Rediscovery ofMultifurca stenophylla (Berk.) T.Lebel, C.W.Dunk & T.W.May comb. nov. (Russulaceae) from Australia".Mycological Progress.12 (3):497–504.Bibcode:2013MycPr..12..497L.doi:10.1007/s11557-012-0856-4.S2CID 15230777.
  20. ^Arora D, Nguyen N (2014)."A new species ofRussula, subgenusCompactae from California"(PDF).North American Fungi.8 (8):1–7.ISSN 1937-786X.Open access icon
  21. ^Miller S, Aime MC, Henkel TW (2013)."Russulaceae of the Pakaraima Mountains of Guyana 2. New species ofRussula andLactifluus"(PDF).Mycotaxon.121 (1):233–253.doi:10.5248/121.233.
  22. ^Sá MC, Wartchow F (2013)."Lactifluus aurantiorugosus (Russulaceae), a new species from Southern Brazil".Darwiniana. Nueva Serie.1:54–60.doi:10.14522/darwiniana.2013.11.520.
  23. ^abTrierveiler-Pereira L, Smith ME, Trappe JM, Nouhra ER (2014). "Sequestrate fungi from Patagonian Nothofagus forests: Cystangium (Russulaceae, Basidiomycota)".Mycologia.107 (1):90–103.doi:10.3852/13-302.hdl:11336/12605.PMID 25232070.S2CID 9078246.
  24. ^Maba DL, Guelly AK, Yorou NS, De Kesel A, Verbeken A, Agerer R (June 2014)."The genus Lactarius s. str. (Basidiomycota, Russulales) in Togo (West Africa): phylogeny and a new species described".IMA Fungus.5 (1):39–49.doi:10.5598/imafungus.2014.05.01.05.PMC 4107895.PMID 25083405.Open access icon
  25. ^abcdefgVerbeken A, Stubbe D, van de Putte K, Eberhardt U, Nuytinck J (June 2014)."Tales of the unexpected: angiocarpous representatives of the Russulaceae in tropical South East Asia".Persoonia.32 (1):13–24.Bibcode:2014PMPEF..32...13V.doi:10.3767/003158514X679119.PMC 4150074.PMID 25264381.Open access icon
  26. ^Vellinga EC (2013)."The North American Mycoflora Project: Without a sequenced specimen it is a rumor".McIlvainea (22): V22/north_american_mycoflora.html.Open access icon
  27. ^Van de Putte K, Nuytinck J, Stubbe D, Le HT, Verbeken A (2010). "Lactarius volemus sensu lato (Russulales) from northern Thailand: Morphological and phylogenetic species concepts explored".Fungal Diversity.45 (1):99–130.Bibcode:2010FuDiv..45...99V.doi:10.1007/s13225-010-0070-0.S2CID 25615396.
  28. ^De Crop E, Nuytinck J, Van de Putte K, Lecomte M, Eberhardt U, Verbeken A (2014). "Lactifluus piperatus (Russulales, Basidiomycota) and allied species in Western Europe and a preliminary overview of the group worldwide".Mycological Progress.13 (3):493–511.Bibcode:2014MycPr..13..493D.doi:10.1007/s11557-013-0931-5.S2CID 18795528.
  29. ^"Contrasting evolutionary patterns in two sister genera of macrofungi:Lactarius andLactifluus". Ghent University. Archived fromthe original on 2014-10-06. Retrieved2014-10-10.
  30. ^abcdefghij"Russulales News / Characteristics of the russuloid fungi". Museo delle scienze. Retrieved2014-11-01.
  31. ^Heim R (1938)."Diagnoses latines d'espèces et variétés nouvelles de Lactario-russulés du domaine oriental de Madagascar [Latin diagnoses for new species and varieties of Lactario-Russulas from the Eastern domain of Madagascar]".Candollea (in French and Latin).7:374–393.
  32. ^abSinger R, Aurajuo I, Ivory MH (1983)."The ectotrophically mycorrhizal fungi of the neotropical lowlands, especially central Amazonia".Beihefte zur Nova Hedwigia:1–352.
  33. ^abcdefghiCourtecuisse R, Duhem B (2013).Champignons de France et d'Europe [Mushrooms of France and Europe]. Guide Delachaux (in French). Paris: Delachaux & Niestlé.ISBN 978-2-603-02038-8.
  34. ^Buyck B, Verbeken A (1995)."Studies in tropical AfricanLactarius species, 2:Lactarius chromospermus Pegler".Mycotaxon.56:427–442.doi:10.5962/p.415931.
  35. ^abcdHenkel T, Aime MC, Miller SL (2000). "Systematics of pleurotoid Russulaceae from Guyana and Japan, with notes on their ectomycorrhizal status".Mycologia.92 (6):1119–1132.doi:10.2307/3761479.JSTOR 3761479.S2CID 84487967.
  36. ^abcdBuyck B, Horak E (1999)."New taxa of pleurotoid Russulaceae".Mycologia.91 (3):532–537.doi:10.2307/3761355.JSTOR 3761355.
  37. ^Wang XH, Stubbe D, Verbeken A (2012). "Lactifluus parvigerardii sp. nov., a new link towards the pleurotoid habit inLactifluus subgen.Gerardii (Russulaceae, Russulales)".Cryptogamie, Mycologie.332 (2):181–190.doi:10.7872/crym.v33.iss2.2012.181.S2CID 86083157.
  38. ^Morozova OV, Popov ES, Kovalenko AE (2013)."Studies on mycobiota of Vietnam. II. Two new species ofLactifluus (Russulaceae) with pleurotoid basidiomata"(PDF).Mikologia I Fitopatologia.47 (2):92–102.
  39. ^abcdThiers HD (1984)."The secotioid syndrome"(PDF).Mycologia.76 (1):1–8.doi:10.2307/3792830.JSTOR 3792830.
  40. ^abDesjardin DE (2003). "A unique ballistosporic hypogeous sequestrateLactarius from California".Mycologia.95 (1):148–155.doi:10.2307/3761974.JSTOR 3761974.PMID 21156601.Open access icon
  41. ^abcMaekawa N (1994)."Taxonomic study of Japanese Corticiaceae (Aphyllophoraceae) II".Report of the Tottori Mycological Institute.32:1–123.
  42. ^abHjortstam K, Larsson KH (1976)."Pseudoxenasma, a new genus of Corticiaceae (Basidiomycetes)".Mycotaxon.4 (1):307–311.doi:10.5962/p.417741.
  43. ^abcdeHjortstam K, Ryvarden L (2007)."Studies in corticioid fungi from Venezuela III (Basidiomycotina, Aphyllophorales)".Synopsis Fungorum.23:56–107. Archived fromthe original on 2016-02-03. Retrieved2014-12-14.
  44. ^Cannon PF, Kirk PM (2007).Fungal Families of the World. Wallingford, UK: CAB International. pp. 317–318.ISBN 978-0-85199-827-5.
  45. ^Ammirati JF, Traquair JA, Horgen PA (1985).Poisonous Mushrooms of Canada: Including other Inedible Fungi. Markham, Ontario: Fitzhenry & Whiteside in cooperation with Agriculture Canada and the Canadian Government Publishing Centre, Supply and Services Canada. p. 57.ISBN 978-0-88902-977-4.
  46. ^abcdeBessette AE, Bessette AR, Fischer D (1996).Mushrooms of Northeastern North America. Syracuse, New York: Syracuse University Press.ISBN 978-0-8156-0388-7.
  47. ^Earle FS (1902). "A key to the North American species ofRussula – I".Torreya.2 (7):101–103.JSTOR 40594086.Open access icon
  48. ^Earle FS (1902). "A key to the North American species ofRussula – II".Torreya.2 (8):117–119.JSTOR 40594096.Open access icon
  49. ^Gómez-Pignataro LD, Alfaro RM (1996)."Basidiomicetes de Costa Rica. DeRussulae novae".Revista de Biología Tropical (in Spanish and English).44 (Suppl. 4):25–37. Archived fromthe original on 2016-04-28. Retrieved2014-12-14.Open access icon
  50. ^Buyck B, Ovrebo CL (2002)."New and interesting Russula species from Panama".Mycologia.94 (5):888–901.doi:10.2307/3761704.JSTOR 3761704.PMID 21156563.Open access icon
  51. ^Sá MC, Baseia IG, Wartchow F (2013)."Checklist of Russulaceae from Brazil"(PDF).Mycotaxon. online 125: 303.Open access icon
  52. ^abGuo J, Karunarathna SC, Mortimer PE, Xu J, Hyde KD (2014)."Phylogenetic diversity ofRussula from Xiaozhongdian, Yunnan, China, inferred from Internal Transcribed Spacer sequence data"(PDF).Chiang Mai Journal of Science.41 (4):811–821.
  53. ^Gorbunova IA (2014). "Biota of agaricoid and gasteriod basidiomycetes of dryad tundras of the Altai-Sayan mountain area (Southern Siberia)".Contemporary Problems of Ecology.7 (1):39–44.Bibcode:2014CPrEc...7...39G.doi:10.1134/S1995425514010065.S2CID 18397587.
  54. ^Lee LS, Alexander IJ, Watling R (1997). "Ectomycorrhizas and putative ectomycorrhizal fungi ofShorea leprosula Miq. (Dipterocarpaceae)".Mycorrhiza.7 (2):63–81.Bibcode:1997Mycor...7...63L.doi:10.1007/s005720050165.S2CID 35051818.
  55. ^abcNatarajan KN, Senthilarasu G, Kumaresan V, Rivière T (2005)."Diversity in ectomycorrhizal fungi of a dipterocarp forest in Western Ghats"(PDF).Current Science.88 (12):1893–1895. Archived fromthe original(PDF) on 2016-03-04. Retrieved2014-12-14.Open access icon
  56. ^abVerbeken A, Buyck B (2002)."Diversity and ecology of tropical ectomycorrhizal fungi in Africa"(PDF). In Watling R, Frankland JC, Ainsworth AM, Isaac S, Robinson CH (eds.).Tropical Mycology: Macromycetes. Wallingford, UK: CAB International. pp. 11–21. Archived fromthe original(PDF) on 2014-10-06.Open access icon
  57. ^abcBougher NL (1996)."Diversity of ectomycorrhizal fungi associated with eucalypts in Australia"(PDF). In Brundett M, Dell B, Malajczuk N, Mingqin G (eds.).Mycorrhizas for plantation forestry in Asia. ACIAR Proceedings. pp. 8–15.ISBN 978-1-86320-167-4.Open access icon
  58. ^abcMcNabb RF (1973)."Russulaceae of New Zealand 2.Russula Pers. ex S. F. Gray".New Zealand Journal of Botany.11 (4):673–730.Bibcode:1973NZJB...11..673M.doi:10.1080/0028825X.1973.10430308.Open access icon
  59. ^abcSinger R (1953)."Four years of mycological work in southern South America".Mycologia.45 (6):865–891.doi:10.1080/00275514.1953.12024322.JSTOR 4547770.
  60. ^Vellinga EC, Wolfe BE, Pringle A (March 2009)."Global patterns of ectomycorrhizal introductions".The New Phytologist.181 (4):960–73.Bibcode:2009NewPh.181..960V.doi:10.1111/j.1469-8137.2008.02728.x.PMID 19170899.Open access icon
  61. ^"Pseudoxenasma verrucisporum". Global Biodiversity Information Facility (GBIF). Retrieved2014-11-20.
  62. ^Bernicchia A, Gorjón SP (2010).Corticiaceae s.l. Fungi Europaei. Vol. 12. Alassio, Italy: Edizioni Candusso.ISBN 978-88-901057-9-1.
  63. ^abWu SH (1996)."Studies onGloeocystidiellum sensu lato (Basidiomycotina) in Taiwan".Mycotaxon.58:1–68.doi:10.5962/p.415991.
  64. ^Ginns J, Freeman GW (1994)."The Gloeocystidiellaceae (Basidiomycota, Hericiales) of North America".Bibliotheca Mycologica.157:1–118.
  65. ^abBoidin J, Lanquetin P, Gilles G (1997)."Le genreGloeocystidiellum sensu lato (Basidiomycotina)".Bulletin de la Société Mycologique de France (in French).113 (1):1–80.
  66. ^Eriksson J, Ryvarden L (1975).The Corticiaceae of North Europe. Vol. 3. Oslo: Fungiflora.
  67. ^"UNITE database: EcM genera and lineages". University of Tartu. Archived fromthe original on 2014-10-25. Retrieved2014-10-25.
  68. ^Tedersoo L, Nara K (January 2010)."General latitudinal gradient of biodiversity is reversed in ectomycorrhizal fungi".The New Phytologist.185 (2):351–4.Bibcode:2010NewPh.185..351T.doi:10.1111/j.1469-8137.2009.03134.x.PMID 20088976.Open access icon
  69. ^abGardes M, Dahlberg A (1996)."Mycorrhizal diversity in arctic and alpine tundra: An open question".New Phytologist.133 (1):147–157.Bibcode:1996NewPh.133..147G.doi:10.1111/j.1469-8137.1996.tb04350.x.Open access icon
  70. ^Gao Q, Yang ZL (April 2010)."Ectomycorrhizal fungi associated with two species of Kobresia in an alpine meadow in the eastern Himalaya".Mycorrhiza.20 (4):281–7.Bibcode:2010Mycor..20..281G.doi:10.1007/s00572-009-0287-5.PMC 2845889.PMID 20012655.Open access icon
  71. ^Harrington TJ, Mitchell DT (2002). "Characterization ofDryas octopetala ectomycorrhizas from limestone karst vegetation, western Ireland".Canadian Journal of Botany.80 (9):970–982.Bibcode:2002CaJB...80..970H.doi:10.1139/b02-082.
  72. ^abcBâ A, Duponnois R, Diabaté, Dreyfus B (2011).Les champignons ectomycorhiziens des arbres forestiers en Afrique de l'Ouest [The ectomycorrhizal fungi of planted trees in West Africa] (in French). Marseille: Institut de recherche pour le développement (IRD). pp. 88–140.ISBN 978-2-7099-1684-4.
  73. ^Haug I, Weiss M, Homeier J, Oberwinkler F, Kottke I (March 2005)."Russulaceae and Thelephoraceae form ectomycorrhizas with members of the Nyctaginaceae (Caryophyllales) in the tropical mountain rain forest of southern Ecuador".The New Phytologist.165 (3):923–36.Bibcode:2005NewPh.165..923H.doi:10.1111/j.1469-8137.2004.01284.x.PMID 15720703.Open access icon
  74. ^abcTedersoo L, Sadam A, Zambrano M, Valencia R, Bahram M (April 2010)."Low diversity and high host preference of ectomycorrhizal fungi in western Amazonia, a neotropical biodiversity hotspot".The ISME Journal.4 (4):465–71.Bibcode:2010ISMEJ...4..465T.doi:10.1038/ismej.2009.131.PMID 19956273.Open access icon
  75. ^Ducousso M, Ramanankierana H, Duponnois R, Rabévohitra R, Randrihasipara L, Vincelette M, Dreyfus B, Prin Y (2008)."Mycorrhizal status of native trees and shrubs from eastern Madagascar littoral forests with special emphasis on one new ectomycorrhizal endemic family, the Asteropeiaceae"(PDF).The New Phytologist.178 (2):233–8.Bibcode:2008NewPh.178..233D.doi:10.1111/j.1469-8137.2008.02389.x.PMID 18371004.Open access icon
  76. ^Tedersoo L, Põlme S (November 2012). "Infrageneric variation in partner specificity: multiple ectomycorrhizal symbionts associate with Gnetum gnemon (Gnetophyta) in Papua New Guinea".Mycorrhiza.22 (8):663–8.Bibcode:2012Mycor..22..663T.doi:10.1007/s00572-012-0458-7.PMID 22892664.S2CID 14575220.
  77. ^abcdMcNabb RF (1971)."The Russulaceae of New Zealand 1.Lactarius DC ex S. F. Gray".New Zealand Journal of Botany.9 (1):46–66.Bibcode:1971NZJB....9...46M.doi:10.1080/0028825X.1971.10430170.Open access icon
  78. ^abTedersoo L, Jairus T, Horton BM, Abarenkov K, Suvi T, Saar I, Kõljalg U (2008)."Strong host preference of ectomycorrhizal fungi in a Tasmanian wet sclerophyll forest as revealed by DNA barcoding and taxon-specific primers".The New Phytologist.180 (2):479–90.Bibcode:2008NewPh.180..479T.doi:10.1111/j.1469-8137.2008.02561.x.PMID 18631297.Open access icon
  79. ^abComandini O, Contu M, Rinaldi AC (September 2006)."An overview of Cistus ectomycorrhizal fungi"(PDF).Mycorrhiza.16 (6):381–395.Bibcode:2006Mycor..16..381C.doi:10.1007/s00572-006-0047-8.PMID 16896800.S2CID 195074078. Archived fromthe original(PDF) on 2016-03-04.
  80. ^"Russulales News / Where do we find Russulales?". Museo delle scienze. Retrieved2014-11-01.
  81. ^Toljander JF, Eberhardt U, Toljander YK, Paul LR, Taylor AF (2006)."Species composition of an ectomycorrhizal fungal community along a local nutrient gradient in a boreal forest".The New Phytologist.170 (4):873–83.Bibcode:2006NewPh.170..873T.doi:10.1111/j.1469-8137.2006.01718.x.PMID 16684245.Open access icon
  82. ^Thormann MN, Rice AV (2007)."Fungi from peatlands"(PDF).Fungal Diversity.24:241–299. Archived fromthe original(PDF) on 2014-12-14. Retrieved2014-12-14.
  83. ^abcRichard F, Millot S, Gardes M, Selosse MA (June 2005). "Diversity and specificity of ectomycorrhizal fungi retrieved from an old-growth Mediterranean forest dominated by Quercus ilex".The New Phytologist.166 (3):1011–23.Bibcode:2005NewPh.166.1011R.doi:10.1111/j.1469-8137.2005.01382.x.PMID 15869659.S2CID 2799893.Open access icon
  84. ^Halling RE, Mueller GM."Agarics and boletes of neotropical oakwoods"(PDF). In Watling R, Frankland JC, Ainsworth AM, Isaac S, Robinson CH (eds.).Tropical Mycology: Macromycetes. Wallingford, UK: CAB International. pp. 1–10. Archived fromthe original(PDF) on 2014-10-07.Open access icon
  85. ^Phosri C, Põlme S, Taylor AF, Kõljalg U, Suwannasai N, Tedersoo L (2012). "Diversity and community composition of ectomycorrhizal fungi in a dry deciduous dipterocarp forest in Thailand".Biodiversity and Conservation.21 (9):2287–2298.Bibcode:2012BiCon..21.2287P.doi:10.1007/s10531-012-0250-1.S2CID 14185353.
  86. ^Miller OK, Hilton RN (1986)."New and interesting agarics from Western Australia"(PDF).Sydowia.39:126–137.
  87. ^van der Westhuizen GC, Eicker A (1987). "Some fungal symbionts of ectotrophic mycorrhizae of pines in South Africa".South African Forestry Journal.143 (1):20–24.Bibcode:1987SAfFJ.143...20V.doi:10.1080/00382167.1987.9630296.
  88. ^Chalermpongse A. (1995).The occurrence and use of ectomycorrhizal fungi in eucalypt plantations in Thailand. In ACIAR PROCEEDINGS(PDF). Canberra: Australian Centre for International Agricultural Research. pp. 127–131.Open access icon
  89. ^abSmith SE, Read D (2008).Mycorrhizal Symbiosis (3rd ed.). Amsterdam; Boston: Academic Press.ISBN 978-0-12-370526-6.
  90. ^abMühlmann O, Göbl F (June 2006). "Mycorrhiza of the host-specific Lactarius deterrimus on the roots of Picea abies and Arctostaphylos uva-ursi".Mycorrhiza.16 (4):245–250.Bibcode:2006Mycor..16..245M.doi:10.1007/s00572-006-0038-9.PMID 16496189.S2CID 86309482.
  91. ^abCullings KW, Szaro TM, Bruns TD (1996)."Evolution of extreme specialization within a lineage of ectomycorrhizal epiparasites"(PDF).Nature.379 (6560):63–66.Bibcode:1996Natur.379...63C.doi:10.1038/379063a0.S2CID 4244284. Archived fromthe original(PDF) on 2014-12-17. Retrieved2014-12-14.
  92. ^abBidartondo MI (August 2005)."The evolutionary ecology of myco-heterotrophy".The New Phytologist.167 (2):335–52.Bibcode:2005NewPh.167..335B.doi:10.1111/j.1469-8137.2005.01429.x.PMID 15998389.Open access icon
  93. ^Yang S, Pfister DH (2006). "Monotropa uniflora plants of eastern Massachusetts form mycorrhizae with a diversity of russulacean fungi".Mycologia.98 (4):535–40.doi:10.3852/mycologia.98.4.535.PMID 17139846.S2CID 39886589.Open access icon
  94. ^Dearnaley JD (September 2007)."Further advances in orchid mycorrhizal research"(PDF).Mycorrhiza.17 (6):475–486.Bibcode:2007Mycor..17..475D.doi:10.1007/s00572-007-0138-1.PMID 17582535.S2CID 6199725.
  95. ^abTaylor DL, Bruns TD, Hodges SA (January 2004)."Evidence for mycorrhizal races in a cheating orchid".Proceedings. Biological Sciences.271 (1534):35–43.doi:10.1098/rspb.2003.2557.PMC 1691555.PMID 15002769.Open access icon
  96. ^Roy M, Watthana S, Stier A, Richard F, Vessabutr S, Selosse MA (August 2009)."Two mycoheterotrophic orchids from Thailand tropical dipterocarpacean forests associate with a broad diversity of ectomycorrhizal fungi".BMC Biology.7 (1) 51.doi:10.1186/1741-7007-7-51.PMC 2745373.PMID 19682351.Open access icon
  97. ^abGirlanda M, Selosse MA, Cafasso D, Brilli F, Delfine S, Fabbian R, Ghignone S, Pinelli P, Segreto R, Loreto F, Cozzolino S, Perotto S (February 2006)."Inefficient photosynthesis in the Mediterranean orchid Limodorum abortivum is mirrored by specific association to ectomycorrhizal Russulaceae"(PDF).Molecular Ecology.15 (2):491–504.Bibcode:2006MolEc..15..491G.doi:10.1111/j.1365-294x.2005.02770.x.PMID 16448415.S2CID 40474597.
  98. ^Smith ME, Trappe JM, Rizzo DM, Miller SL (May 2006). "Gymnomyces xerophilus sp. nov. (sequestrate Russulaceae), an ectomycorrhizal associate of Quercus in California".Mycological Research.110 (Pt 5):575–82.doi:10.1016/j.mycres.2006.03.001.PMID 16769510.
  99. ^Nuytinck J, Verbeken A, Delarue S, Walleyn R (2003). "Systematics of European sequestrate lactarioid Russulaceae with spiny spore ornamentation".Belgian Journal of Botany.136 (2):145–153.JSTOR 20794526.
  100. ^Machniki N, Wright LL, Allen A, Robertson CP, Meyer C, Birkebak JM, Ammirati JF (2006)."Russula crassotunicata identified as a host forDendrocollybia racemosa"(PDF).Pacific Northwest Fungi.1 (9):1–7.doi:10.2509/pnwf.2006.001.009 (inactive 11 July 2025).{{cite journal}}: CS1 maint: DOI inactive as of July 2025 (link)Open access icon
  101. ^"The Global Fungal Red List Initiative". International Union for Conservation of Nature (IUCN). Retrieved2014-11-16.
  102. ^"The IUCN Red List of Threatened Species. Version 2014.3". International Union for Conservation of Nature (IUCN). Archived fromthe original on 2014-06-27. Retrieved2014-11-15.
  103. ^Evans S, Henrici A, Ing B (2006)."Red Data List of Threatened British Fungi"(PDF). British Mycological Society. Archived fromthe original(PDF) on 2014-12-14.
  104. ^Senn-Irlet B, Bieri G, Egli S (2007).Rote Liste der gefährdeten Grosspilze der Schweiz [Red list of endangered macromycetes of Switzerland](PDF) (in German). Bern; Birmensdorf: Bundesamt für Umwelt & WSL.Open access icon
  105. ^Holec J, Beran M (2006)."Red list of fungi (macromycetes) of the Czech Republic"(PDF).Příroda (in Czech and English).24:1–282.ISSN 1211-3603.
  106. ^"Nationally Critical: Rare and endangered fungi". Landcare Research. Archived fromthe original on February 17, 2013. Retrieved2014-11-15.
  107. ^Parkyn L, Stoneman RE, Ingram HA, eds. (1997).Conserving peatlands. Wallingford, UK: CAB International.ISBN 978-0-85198-998-3.
  108. ^Médail F, Quézel P (1999). "Biodiversity Hotspots in the Mediterranean Basin: Setting global conservation priorities".Conservation Biology.13 (6):1510–1513.Bibcode:1999ConBi..13.1510M.doi:10.1046/j.1523-1739.1999.98467.x.S2CID 84365927.
  109. ^Sjumpangani S, Chirwa PW, Akinnifesi FK, Sileshi G, Ajayi O (2009). "The miombo woodlands at the cross roads: Potential threats, sustainable livelihoods, policy gaps and challenges".Natural Resources Forum.33 (2):150–159.Bibcode:2009NRF....33..150S.doi:10.1111/j.1477-8947.2009.01218.x.
  110. ^Jonsson BG, Kruys N, Ranius T (2005)."Ecology of species living on dead wood – Lessons for dead wood management".Silva Fennica.39 (2):289–309.doi:10.14214/sf.390.Open access icon
  111. ^Bickford D, Lohman DJ, Sodhi NS, Ng PK, Meier R, Winker K, Ingram KK, Das I (March 2007)."Cryptic species as a window on diversity and conservation"(PDF).Trends in Ecology & Evolution.22 (3):148–55.Bibcode:2007TEcoE..22..148B.doi:10.1016/j.tree.2006.11.004.PMID 17129636.
  112. ^"Russulales News / Edibility and toxicity of Russulales". Museo delle scienze. Retrieved2014-12-13.
  113. ^Zeitlmayr L (1976).Wild Mushrooms: An Illustrated Handbook. London, UK: Transatlantic Arts. p. 44.ISBN 978-0-584-10324-3.
  114. ^Arora D (1986).Mushrooms Demystified: A Comprehensive Guide to the Fleshy Fungi. Berkeley, California: Ten Speed Press. p. 84.ISBN 978-0-89815-169-5.
  115. ^Miller HR, Miller OK Jr (2006).North American Mushrooms: A Field Guide to Edible and Inedible Fungi. Guilford, Connecticut: Falcon Guides. p. 73.ISBN 978-0-7627-3109-1.
  116. ^Veteläinen M, Huldén M, Pehu T (2008).State of plant genetic resources for food and agriculture in Finland. Second Finnish National Report(PDF).Country Report on the State of Plant Genetic Resources for Food and Agriculture (Report). Sastamala, Finland: Ministry of Agriculture and Forestry. p. 14.
  117. ^Molokhovets E (1992).Classic Russian Cooking. Bloomington, Indiana: Indiana University Press. p. 95.ISBN 978-0-253-21210-8.
  118. ^Roberts P, Evans S (2014).The Book of Fungi: A Life-Size Guide to Six Hundred Species from around the World. Chicago: University of Chicago Press. p. 595.ISBN 978-0-226-17719-9.
  119. ^Rogers R (2006).The Fungal Pharmacy: Medicinal Mushrooms of Western Canada. Edmonton, Alberta: Prairie Deva Press. p. 178.ISBN 978-0-9781358-1-2.
  120. ^Chen Z, Zhang P, Zhang Z (2014). "Investigation and analysis of 102 mushroom poisoning cases in Southern China from 1994 to 2012".Fungal Diversity.64 (1):123–131.Bibcode:2014FuDiv..64..123C.doi:10.1007/s13225-013-0260-7.S2CID 5341127.
  121. ^abSuortti T, von Wright A, Koskinen A (1983). "Necatorin, a highly mutagenic compound fromLactarius necator".Phytochemistry.22 (12):2873–2874.Bibcode:1983PChem..22.2873S.doi:10.1016/S0031-9422(00)97723-9.
  122. ^Guerin-Laguette A, Cummings N, Butler RC, Willows A, Hesom-Williams N, Li S, Wang Y (October 2014). "Lactarius deliciosus and Pinus radiata in New Zealand: towards the development of innovative gourmet mushroom orchards".Mycorrhiza.24 (7):511–23.Bibcode:2014Mycor..24..511G.doi:10.1007/s00572-014-0570-y.PMID 24676792.S2CID 13077838.
  123. ^Rapior S, Fons F, Bessière JM (2000)."The fenugreek odor ofLactarius helvus".Mycologia.92 (2):305–308.doi:10.2307/3761565.JSTOR 3761565.
  124. ^Wood WF, Brandes JA, Foy BD, Morgan CG, Mann TD, DeShazer DA (2012). "The maple syrup odour of the "candy cap" mushroom,Lactarius fragilis var.rubidus".Biochemical Systematics and Ecology.43:51–53.Bibcode:2012BioSE..43...51W.doi:10.1016/j.bse.2012.02.027.
  125. ^Harmon AD, Weisgraber KH, Weiss U (1979). "Preformed azulene pigments ofLactarius indigo (Schw.) Fries (Russulaceae, Basidiomycetes)".Cellular and Molecular Life Sciences.36 (1):54–56.doi:10.1007/BF02003967.S2CID 21207966.
  126. ^Fröde R, Bröckelmann M, Steffan B, Steglich W, Marumoto R (1995). "A novel type of triterpenoid quinone methide pigment from the toadstoolRussula flavida (Agaricales)".Tetrahedron.51 (9):2553–2560.doi:10.1016/0040-4020(95)00012-W.
  127. ^Gry J, Andersson C (2014).Mushrooms Traded as Food. Vol II sec. 2. Copenhagen: Nordic Council of Ministers. p. 236.ISBN 978-92-893-2705-3.
  128. ^abcdefgVitari G, Vita-Finzi P (1995)."Sesquiterpenes and other secondary metabolites of genusLactarius (Basidiomycetes): Chemistry and biological activity".Studies in Natural Products Chemistry. Structure and Chemistry (Part D). Vol. 17. Elsevier Science. pp. 153–206.doi:10.1016/S1572-5995(05)80084-5.ISBN 978-0-08-054198-3.
  129. ^Kobata K, Kano S, Shibata H (1995)."New lactarane sesquiterpenoid from the fungusRussula emetica".Bioscience, Biotechnology, and Biochemistry.59 (2):316–318.doi:10.1271/bbb.59.316.
  130. ^Tanaka Y, Kawahara S, Eng AH, Takei A, Ohya N (1994)."Structure of cis-polyisoprene from Lactarius mushrooms".Acta Biochimica Polonica.41 (3):303–9.doi:10.18388/abp.1994_4719.PMID 7856401.
  131. ^Yue JM, Chen SN, Lin ZW, Sun HD (April 2001). "Sterols from the fungus Lactarium volemus".Phytochemistry.56 (8):801–6.Bibcode:2001PChem..56..801Y.doi:10.1016/S0031-9422(00)00490-8.PMID 11324907.
  132. ^Bourquelot E (1889)."Sur la volémite, nouvelle matière sucrée" [On volémite, a new sweet substance].Journal de Pharmacie et de Chimie (in French).2:385–390.
  133. ^Matsuura M, Saikawa Y, Inui K, Nakae K, Igarashi M, Hashimoto K, Nakata M (July 2009). "Identification of the toxic trigger in mushroom poisoning".Nature Chemical Biology.5 (7):465–7.doi:10.1038/nchembio.179.PMID 19465932.
  134. ^Yaltirak T, Aslim B, Ozturk S, Alli H (August 2009). "Antimicrobial and antioxidant activities of Russula delica Fr".Food and Chemical Toxicology.47 (8):2052–6.doi:10.1016/j.fct.2009.05.029.PMID 19481130.
  135. ^Zhang G, Sun J, Wang H, Ng TB (August 2010). "First isolation and characterization of a novel lectin with potent antitumor activity from a Russula mushroom".Phytomedicine.17 (10):775–81.doi:10.1016/j.phymed.2010.02.001.PMID 20378319.

External links

[edit]
Wikispecies has information related toRussulaceae.
Russulaceae
National
Other
Retrieved from "https://en.wikipedia.org/w/index.php?title=Russulaceae&oldid=1323507819"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp