Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Runoff model (reservoir)

From Wikipedia, the free encyclopedia
Type of water motion
A watershed or drainage basin

Arunoff models orrainfall-runoff model describes howrainfall is converted intorunoff in adrainage basin (catchment area or watershed). More precisely, it produces asurface runoffhydrograph in response to a rainfall event, represented by and input as ahyetograph. Rainfall-runoff models need to becalibrated before they can be used.

A well known runoff model is thelinear reservoir, but in practice it has limited applicability.The runoff model with anon-linear reservoir is more universally applicable, but still it holds only for catchments whose surface area is limited by the condition that the rainfall can be considered more or less uniformly distributed over the area. The maximum size of the watershed then depends on the rainfall characteristics of the region. When the study area is too large, it can be divided into sub-catchments and the various runoff hydrographs may be combined usingflood routing techniques.

Linear reservoir

[edit]
Figure 1. A linear reservoir

The hydrology of a linear reservoir (figure 1) is governed by two equations.[1]

  1. flow equation:  Q=AS{\displaystyle Q=A\cdot S}, with units [L/T], where L is length (e.g. mm) and T is time (e.g. h, day)
  2. continuity or water balance equation:  R=Q+dSdT{\displaystyle R=Q+{\frac {dS}{dT}}}, with units [L/T]

where:
Q is therunoff or discharge
R is theeffective rainfall orrainfall excess orrecharge
A is the constantreaction factor orresponse factor with unit [1/T]
S is the water storage with unit [L]
dS is a differential or small increment of S
dT is a differential or small increment of T

Runoff equation
A combination of the two previous equations results in adifferential equation, whose solution is:

This is therunoff equation ordischarge equation, where Q1 and Q2 are the values of Q at time T1 and T2 respectively while T2−T1 is a small time step during which the recharge can be assumed constant.

Computing the total hydrograph
Provided the value of A is known, thetotal hydrograph can be obtained using a successive number of time steps and computing, with therunoff equation, the runoff at the end of each time step from the runoff at the end of the previous time step.

Unit hydrograph
The discharge may also be expressed as: Q = − dS/dT . Substituting herein the expression of Q in equation (1) gives the differential equation dS/dT = A·S, of which the solution is: S = exp(− A·t) . Replacing herein S by Q/A according to equation (1), it is obtained that: Q = A exp(− A·t) . This is called theinstantaneous unit hydrograph (IUH) because the Q herein equals Q2 of the foregoing runoff equation usingR = 0, and taking S asunity which makes Q1 equal to A according to equation (1).
The availability of the foregoingrunoff equation eliminates the necessity of calculating thetotal hydrograph by the summation of partial hydrographs using theIUH as is done with the more complicatedconvolution method.[2]

Determining the response factor A
When theresponse factor A can be determined from the characteristics of the watershed (catchment area), the reservoir can be used as adeterministic model oranalytical model, seehydrological modelling.
Otherwise, the factor A can be determined from a data record of rainfall and runoff using the method explained below undernon-linear reservoir. With this method the reservoir can be used as ablack box model.

Conversions
1 mm/day corresponds to 10 m3/day per ha of the watershed
1 L/s per ha corresponds to 8.64 mm/day or 86.4 m3/day per ha

Non-linear reservoir

[edit]
Figure 2. A non-linear reservoir
Figure 3. The reaction factor (Aq, Alpha) versus discharge (Q) for a small valley (Rogbom) in Sierra Leone
Figure 4. Actual and simulated discharge, Rogbom valley
Figure 5. Rainfall and recharge, Rogbom valley
Figure 6. Non-linear reservoir with pre-reservoir for recharge

Contrary to the linear reservoir, the non linear reservoir has a reaction factor A that is not a constant,[3] but it is a function of S or Q (figure 2, 3).

Normally A increases with Q and S because the higher the water level is the higher the discharge capacity becomes. The factor is therefore called Aq instead of A.
The non-linear reservoir hasno usableunit hydrograph.

During periods without rainfall or recharge, i.e. whenR = 0, the runoff equation reduces to

  • Q2 = Q1 exp { − Aq (T2 − T1) }, or:

or, using aunit time step (T2 − T1 = 1) and solving for Aq:

  • Aq = − ln (Q2/Q1)

Hence, the reaction or response factor Aq can be determined from runoff or discharge measurements usingunit time steps during dry spells, employing anumerical method.

Figure 3 shows the relation between Aq (Alpha) and Q for a small valley (Rogbom) in Sierra Leone.
Figure 4 shows observed andsimulated orreconstructed dischargehydrograph of the watercourse at the downstream end of the same valley.[4][5]

Recharge

[edit]
Figure 7. Runoff from the water balance

The recharge, also calledeffective rainfall orrainfall excess, can be modeled by apre-reservoir (figure 6) giving the recharge asoverflow. The pre-reservoir knows the following elements:

  • a maximum storage (Sm) with unit length [L]
  • an actual storage (Sa) with unit [L]
  • a relative storage: Sr = Sa/Sm
  • a maximum escape rate (Em) with units length/time [L/T]. It corresponds to the maximum rate ofevaporation pluspercolation andgroundwater recharge, which will not take part in the runoff process (figure 5, 6)
  • an actual escape rate: Ea = Sr·Em
  • a storage deficiency: Sd = Sm + Ea − Sa

The recharge during a unit time step (T2−T1=1) can be found fromR = Rain − Sd
The actual storage at the end of aunit time step is found as Sa2 = Sa1 + Rain −R − Ea, where Sa1 is the actual storage at the start of the time step.

TheCurve Number method (CN method) gives another way to calculate the recharge. Theinitial abstraction herein compares with Sm − Si, where Si is the initial value of Sa.

Nash model

[edit]
The Nash Model uses a cascade of linear reservoirs to predict streamflow. Software for this model exists.[6]

The Nash model[7] uses a series (cascade) of linear reservoirs in which each reservoir empties into the next until the runoff is obtained. Forcalibration, the model requires considerable research.

Software

[edit]

Figures 3 and 4 were made with the RainOff program,[8] designed to analyse rainfall and runoff using the non-linear reservoir model with a pre-reservoir. The program also contains an example of the hydrograph of an agricultural subsurface drainage system for which the value of A can be obtained from the system's characteristics.[9]

Raven is a robust and flexible hydrological modelling framework, designed for application to challenging hydrological problems in academia and practice. This fully object-oriented code provides complete flexibility in spatial discretization, interpolation, process representation, and forcing function generation. Models built with Raven can be as simple as a single watershed lumped model with only a handful of state variables to a full semi-distributed system model with physically-based infiltration, snowmelt, and routing. This flexibility encourages stepwise modelling while enabling investigation into critical research issues regarding discretization, numerical implementation, and ensemble simulation of surface water hydrological models. Raven is open source, covered under the Artistic License 2.0.

The SMART hydrological model[10] includes agricultural subsurface drainage flow, in addition to soil and groundwater reservoirs, to simulate the flow path contributions to streamflow.

Vflo is another software program for modeling runoff.Vflo usesradar rainfall andGIS data to generate physics-based, distributed runoff simulation.

TheWEAP (Water Evaluation And Planning) software platform models runoff and percolation from climate and land use data, using a choice of linear and non-linear reservoir models.

TheRS MINERVE software platform simulates the formation of free surface run-off flow and its propagation in rivers or channels. The software is based on object-oriented programming and allows hydrologic and hydraulic modeling according to a semi-distributed conceptual scheme with different rainfall-runoff model such as HBV,[11] GR4J, SAC-SMA or SOCONT.

TheIHACRES is a catchment-scale rainfall-streamflow modelling methodology. Its purpose is to assist the hydrologist or water resources engineer to characterise the dynamic relationship between basin rainfall and streamflow.[12]

References

[edit]
  1. ^J.W. de Zeeuw, 1973.Hydrograph analysis for areas with mainly groundwater runoff. In: Drainage Principle and Applications, Vol. II, Chapter 16, Theories of field drainage and watershed runoff. p 321-358. Publication 16, International Institute for Land Reclamation and Improvement (ILRI), Wageningen, The Netherlands.
  2. ^D.A. Kraijenhoff van de Leur, 1973.Rainfall-runoff relations and computational models. In: Drainage Principle and Applications, Vol. II, Chapter 16, Theories of field drainage and watershed runoff. p 245-320. Publication 16, International Institute for Land Reclamation and Improvement (ILRI), Wageningen, The Netherlands.
  3. ^Land drainage and soil salinity: some Mexican experiences. In: ILRI Annual Report 1995, p. 44-53. International Institute for Land Reclamation and Improvement, Wageningen (ILRI), The Netherlands. On line:[1]
  4. ^A.Huizing, 1988.Rainfall-Runoff relations in a small cultivated valley in Sierra Leone. Wetland Utilization Research Project. International Institute for Land Reclamation and Improvement, Wageningen, The Netherlands
  5. ^Rainfall-runoff relations of a small valley assessed with a non-linear reservoir model. In: International Journal of Environmental Science, January 1019. On line:[2]
  6. ^Software description for the Nash cascade hydrological model. On line:[3].
  7. ^Jayawardena, A. W. (2014).Environmental and Hydrological Systems Modelling. US: CRC Press.ISBN 978-0-415-46532-8.
  8. ^RainOff, a computer model for rainfall-runoff relations using the concept of a non-linear reservoir. Download from:[4], or from:[5]
  9. ^Theory of the non-linear reservoir
  10. ^Mockler, Eva M.; O’Loughlin, Fiachra E.; Bruen, Michael (2016-05-01)."Understanding hydrological flow paths in conceptual catchment models using uncertainty and sensitivity analysis".Computers & Geosciences. Uncertainty and Sensitivity in Surface Dynamics Modeling. 90, Part B:66–77.Bibcode:2016CG.....90...66M.doi:10.1016/j.cageo.2015.08.015.hdl:10197/7875.
  11. ^"HBV-light Model".www.geo.uzh.ch. Retrieved2023-05-19.
  12. ^"IHACRES | Tools | eWater Toolkit".toolkit.ewater.org.au. Retrieved2023-05-19.
Agricultural water management
Irrigation
Subsurface drainage
Surface water/runoff
Groundwater
Problem soils
Agro-hydro-salinity group
Related topics
Models used in agricultural water management
Drainage models
Agro-hydro-salinity models
Related topics
Hydrological models
Retrieved from "https://en.wikipedia.org/w/index.php?title=Runoff_model_(reservoir)&oldid=1294723312"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp