Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Rubidium

This is a good article. Click here for more information.
From Wikipedia, the free encyclopedia
Not to be confused withruthenium.

Chemical element with atomic number 37 (Rb)
Rubidium, 37Rb
Rubidium
Pronunciation/rˈbɪdiəm/ (roo-BID-ee-əm)
Appearancegrey white
Standard atomic weightAr°(Rb)
Rubidium in theperiodic table
HydrogenHelium
LithiumBerylliumBoronCarbonNitrogenOxygenFluorineNeon
SodiumMagnesiumAluminiumSiliconPhosphorusSulfurChlorineArgon
PotassiumCalciumScandiumTitaniumVanadiumChromiumManganeseIronCobaltNickelCopperZincGalliumGermaniumArsenicSeleniumBromineKrypton
RubidiumStrontiumYttriumZirconiumNiobiumMolybdenumTechnetiumRutheniumRhodiumPalladiumSilverCadmiumIndiumTinAntimonyTelluriumIodineXenon
CaesiumBariumLanthanumCeriumPraseodymiumNeodymiumPromethiumSamariumEuropiumGadoliniumTerbiumDysprosiumHolmiumErbiumThuliumYtterbiumLutetiumHafniumTantalumTungstenRheniumOsmiumIridiumPlatinumGoldMercury (element)ThalliumLeadBismuthPoloniumAstatineRadon
FranciumRadiumActiniumThoriumProtactiniumUraniumNeptuniumPlutoniumAmericiumCuriumBerkeliumCaliforniumEinsteiniumFermiumMendeleviumNobeliumLawrenciumRutherfordiumDubniumSeaborgiumBohriumHassiumMeitneriumDarmstadtiumRoentgeniumCoperniciumNihoniumFleroviumMoscoviumLivermoriumTennessineOganesson
K

Rb

Cs
kryptonrubidiumstrontium
Atomic number(Z)37
Groupgroup 1: hydrogen andalkali metals
Periodperiod 5
Block s-block
Electron configuration[Kr] 5s1
Electrons per shell2, 8, 18, 8, 1
Physical properties
Phaseat STPsolid
Melting point312.45 K ​(39.30 °C, ​102.74 °F)
Boiling point961 K ​(688 °C, ​1270 °F)
Density (at 20° C)1.534 g/cm3[3]
when liquid (at m.p.)1.46 g/cm3
Triple point312.41 K, ​? kPa[4]
Critical point2093 K, 16 MPa (extrapolated)[4]
Heat of fusion2.19 kJ/mol
Heat of vaporization69 kJ/mol
Molar heat capacity31.060 J/(mol·K)
Vapor pressure
P (Pa)1101001 k10 k100 k
at T (K)434486552641769958
Atomic properties
Oxidation statescommon:+1
−1[5]
ElectronegativityPauling scale: 0.82
Ionization energies
  • 1st: 403 kJ/mol
  • 2nd: 2632.1 kJ/mol
  • 3rd: 3859.4 kJ/mol
Atomic radiusempirical: 248 pm
Covalent radius220±9 pm
Van der Waals radius303 pm
Color lines in a spectral range
Spectral lines of rubidium
Other properties
Natural occurrenceprimordial
Crystal structurebody-centered cubic (bcc) (cI2)
Lattice constant
Body-centered cubic crystal structure for rubidium
a = 569.9 pm (at 20 °C)[3]
Thermal expansion85.6×10−6/K (at 20 °C)[3]
Thermal conductivity58.2 W/(m⋅K)
Electrical resistivity128 nΩ⋅m (at 20 °C)
Magnetic orderingparamagnetic[6]
Molar magnetic susceptibility+17.0×10−6 cm3/mol (303 K)[7]
Young's modulus2.4 GPa
Bulk modulus2.5 GPa
Speed of sound thin rod1300 m/s (at 20 °C)
Mohs hardness0.3
Brinell hardness0.216 MPa
CAS Number7440-17-7
History
DiscoveryRobert Bunsen andGustav Kirchhoff (1861)
First isolationGeorge de Hevesy
Isotopes of rubidium
Main isotopes[8]Decay
abun­dancehalf-life(t1/2)modepro­duct
82Rbsynth1.2575 mβ+82Kr
83Rbsynth86.2 dε83Kr
γ
84Rbsynth32.9 dε84Kr
β+84Kr
γ
β84Sr
85Rb72.2%stable
86Rbsynth18.7 dβ86Sr
γ
87Rb27.8%4.923×1010 yβ87Sr
 Category: Rubidium
| references

Rubidium is achemical element; it hassymbolRb andatomic number 37. It is a very soft, whitish-grey solid in thealkali metal group, similar topotassium andcaesium.[9] Rubidium is the firstalkali metal in the group to have a density higher thanwater. On Earth, natural rubidium comprises twoisotopes: 72% is a stable isotope85Rb, and 28% is slightlyradioactive87Rb, with ahalf-life of 48.8 billion years – more than three times as long as the estimatedage of the universe.

German chemistsRobert Bunsen andGustav Kirchhoff discovered rubidium in 1861 by the newly developed technique,flame spectroscopy. The name comes from theLatin wordrubidus, meaning deep red, the color of its emission spectrum. Rubidium's compounds have various chemical and electronic applications. Rubidium metal is easily vaporized and has a convenient spectral absorption range, making it a frequent target forlaser manipulation ofatoms.[10] Rubidium is not a known nutrient for anyliving organisms. However, rubidiumions have similar properties and the same charge as potassium ions, and are actively taken up and treated byanimal cells in similar ways.

Characteristics

[edit]

Physical properties

[edit]
Partially molten rubidium metal in an ampoule

Rubidium is a very soft,ductile, silvery-white metal.[11] It has a melting point of 39.3 °C (102.7 °F) and a boiling point of 688 °C (1,270 °F).[12] It formsamalgams withmercury andalloys withgold,iron,caesium,sodium, andpotassium, but notlithium (despite rubidium and lithium being in the same periodic group).[13] Rubidium and potassium show a very similar purple color in theflame test, and distinguishing the two elements requires more sophisticated analysis, such as spectroscopy.[14]

Chemical properties

[edit]
Rubidium crystals (silvery) compared tocaesium crystals (golden)

Rubidium is the second mostelectropositive of the stable alkali metals and has a very low firstionization energy of only 403 kJ/mol.[12] It has an electron configuration of [Kr]5s1 and is photosensitive.[15]: 382  Due to its strong electropositive nature, rubidium reacts explosively with water[16] to produce rubidium hydroxide and hydrogen gas.[15]: 383  As with all the alkali metals, the reaction is usually vigorous enough to ignite metal or thehydrogen gas produced by the reaction, potentially causing an explosion.[17] Rubidium, being denser than potassium, sinks in water, reacting violently; caesium explodes on contact with water.[18] However, the reaction rates of all alkali metals depend upon surface area of metal in contact with water, with small metal droplets giving explosive rates.[19] Rubidium has also been reported to ignite spontaneously in air.[11]

Compounds

[edit]
See also:Category:Rubidium compounds
The ball-and-stick diagram shows two regular octahedra which are connected to each other by one face. All nine vertices of the structure are purple spheres representing rubidium, and at the centre of each octahedron is a small red sphere representing oxygen.
Rb
9
O
2
cluster

Rubidium chloride (RbCl) is probably the most used rubidium compound: among several other chlorides, it is used to induce living cells to take upDNA; it is also used as a biomarker, because in nature, it is found only in small quantities in living organisms and when present, replaces potassium. Other common rubidium compounds are the corrosiverubidium hydroxide (RbOH), the starting material for most rubidium-based chemical processes;rubidium carbonate (Rb2CO3), used in some optical glasses, and rubidium copper sulfate, Rb2SO4·CuSO4·6H2O.Rubidium silver iodide (RbAg4I5) has the highestroom temperatureconductivity of any knownionic crystal, a property exploited in thin filmbatteries and other applications.[20][21]

Rubidium forms a number ofoxides when exposed to air, including rubidium monoxide (Rb2O), Rb6O, and Rb9O2; rubidium in excess oxygen gives thesuperoxideRbO2. Rubidium forms salts with halogens, producingrubidium fluoride,rubidium chloride,rubidium bromide, andrubidium iodide.[22]

Isotopes

[edit]
Main article:Isotopes of rubidium

Although rubidium ismonoisotopic, rubidium in the Earth's crust is composed of two isotopes: the stable85Rb (72.2%) and theradioactive87Rb (27.8%).[23] Natural rubidium is radioactive, with specific activity of about 670Bq/g, enough to significantly expose aphotographic film in 110 days.[24][25] Thirty additional rubidium isotopes have been synthesized with half-lives of less than 3 months; most are highly radioactive and have few uses.[26]

Rubidium-87 has ahalf-life of48.8×109 years, which is more than three times theage of the universe of(13.799±0.021)×109 years,[27] making it aprimordial nuclide. It readily substitutes forpotassium inminerals, and is therefore fairly widespread. Rb has been used extensively indating rocks;87Rbbeta decays to stable87Sr. Duringfractional crystallization, Sr tends to concentrate inplagioclase, leaving Rb in the liquid phase. Hence, the Rb/Sr ratio in residualmagma may increase over time, and the progressingdifferentiation results in rocks with elevated Rb/Sr ratios. The highest ratios (10 or more) occur inpegmatites. If the initial amount of Sr is known or can be extrapolated, then the age can be determined by measurement of the Rb and Sr concentrations and of the87Sr/86Sr ratio. The dates indicate the true age of the minerals only if the rocks have not been subsequently altered (seerubidium–strontium dating).[28][29]

Rubidium-82, one of the element's non-natural isotopes, is produced byelectron-capture decay ofstrontium-82 with a half-life of 25.36 days. With a half-life of 76 seconds, rubidium-82 decays by positron emission to stablekrypton-82.[23]

Occurrence

[edit]

Rubidium is not abundant, being one of 56 elements that combined make up 0.05% of the Earth's crust; at roughly the 23rdmost abundant element in the Earth's crust it is more abundant thanzinc orcopper.[30]: 4  It occurs naturally in the mineralsleucite,pollucite,carnallite, andzinnwaldite, which contain as much as 1% rubidiumoxide.Lepidolite contains between 0.3% and 3.5% rubidium, and is the commercial source of the element.[31] Somepotassium minerals andpotassium chlorides also contain the element in commercially significant quantities.[32]

Seawater contains an average of 125 μg/L of rubidium compared to the much higher value for potassium of 408 mg/L and the much lower value of 0.3 μg/L for caesium.[33] Rubidium is the 18th most abundant element in seawater.[15]: 371 

Because of its largeionic radius, rubidium is one of the "incompatible elements".[34] Duringmagma crystallization, rubidium is concentrated together with its heavier analogue caesium in the liquid phase and crystallizes last. Therefore, the largest deposits of rubidium and caesium are zonepegmatite ore bodies formed by this enrichment process. Because rubidium substitutes forpotassium in the crystallization of magma, the enrichment is far less effective than that of caesium. Zone pegmatite ore bodies containing mineable quantities of caesium aspollucite or the lithium mineralslepidolite are also a source for rubidium as a by-product.[30]

Two notable sources of rubidium are the rich deposits ofpollucite atBernic Lake,Manitoba, Canada, and therubicline((Rb,K)AlSi3O8) found as impurities in pollucite on the Italian island ofElba, with a rubidium content of 17.5%.[35] Both of those deposits are also sources of caesium.[36]

Production

[edit]
Flame test for rubidium

Although rubidium is more abundant in Earth's crust than caesium, the limited applications and the lack of a mineral rich in rubidium limits the production of rubidium compounds to 2 to 4tonnes per year.[30] Several methods are available for separating potassium, rubidium, and caesium. Thefractional crystallization of a rubidium and caesium alum(Cs,Rb)Al(SO4)2·12H2O yields after 30 subsequent steps pure rubidium alum. Two other methods are reported, the chlorostannate process and the ferrocyanide process.[30][37]

For several years in the 1950s and 1960s, a by-product of potassium production called Alkarb was a main source for rubidium. Alkarb contained 21% rubidium, with the rest being potassium and a small amount of caesium.[38] Today the largest producers of caesium produce rubidium as a by-product from pollucite.[30]

History

[edit]
Three middle-aged men, with the one in the middle sitting down. All wear long jackets, and the shorter man on the left has a beard.
Gustav Kirchhoff (left) andRobert Bunsen (center) discovered rubidium by spectroscopy.(Henry Enfield Roscoe is on the right.)

Rubidium was discovered in 1861 byRobert Bunsen andGustav Kirchhoff, in Heidelberg, Germany, in the minerallepidolite throughflame spectroscopy. Because of the bright red lines in itsemission spectrum, they chose a name derived from theLatin wordrubidus, meaning "deep red".[39][40]

Rubidium is a minor component inlepidolite. Kirchhoff and Bunsen processed 150 kg of a lepidolite containing only 0.24% rubidium monoxide (Rb2O). Both potassium and rubidium form insoluble salts withchloroplatinic acid, but those salts show a slight difference in solubility in hot water. Therefore, the less soluble rubidiumhexachloroplatinate (Rb2PtCl6) could be obtained byfractional crystallization. After reduction of the hexachloroplatinate withhydrogen, the process yielded 0.51 grams ofrubidium chloride (RbCl) for further studies. Bunsen and Kirchhoff began their first large-scale isolation of caesium and rubidium compounds with 44,000 litres (12,000 US gal) of mineral water, which yielded 7.3 grams ofcaesium chloride and 9.2 grams ofrubidium chloride.[39][40] Rubidium was the second element, shortly after caesium, to be discovered by spectroscopy, just one year after the invention of thespectroscope by Bunsen and Kirchhoff.[41]

The two scientists used the rubidium chloride to estimate that theatomic weight of the new element was 85.36 (the currently accepted value is 85.47).[39] They tried to generate elemental rubidium by electrolysis of molten rubidium chloride, but instead of a metal, they obtained a blue homogeneous substance, which "neither under the naked eye nor under the microscope showed the slightest trace of metallic substance". They presumed that it was asubchloride (Rb
2
Cl
); however, the product was probably acolloidal mixture of the metal and rubidium chloride.[42] In a second attempt to produce metallic rubidium, Bunsen was able to reduce rubidium by heating charred rubidiumtartrate. Although the distilled rubidium waspyrophoric, they were able to determine the density and the melting point. The quality of this research in the 1860s can be appraised by the fact that their determined density differs by less than 0.1 g/cm3 and the melting point by less than 1 °C from the presently accepted values.[43]

The slight radioactivity of rubidium was discovered in 1908, but that was before the theory of isotopes was established in 1910, and the low level of activity (half-life greater than 1010 years) made interpretation complicated. The now proven decay of87Rb to stable87Sr throughbeta decay was still under discussion in the late 1940s.[44][45]

Rubidium had minimal industrial value before the 1920s.[30] Since then, the most important use of rubidium is research and development, primarily in chemical and electronic applications. In 1995, rubidium-87 was used to produce aBose–Einstein condensate,[46] for which the discoverers,Eric Allin Cornell,Carl Edwin Wieman andWolfgang Ketterle, won the 2001Nobel Prize in Physics.[47]

Applications

[edit]
A rubidium fountainatomic clock at theUnited States Naval Observatory

Rubidium compounds are sometimes used infireworks to give them a purple color.[48] Rubidium has also been considered for use in athermoelectric generator using themagnetohydrodynamic principle, whereby hot rubidium ions are passed through amagnetic field.[49] These conduct electricity and act like anarmature of a generator, thereby generating anelectric current. Rubidium, particularly vaporized87Rb, is one of the most commonly used atomic species employed forlaser cooling andBose–Einstein condensation. Its desirable features for this application include the ready availability of inexpensivediode laser light at the relevantwavelength and the moderate temperatures required to obtain substantial vapor pressures.[50][51] For cold-atom applications requiring tunable interactions,85Rb is preferred for its richFeshbach spectrum.[52]

Rubidium has been used for polarizing3He, producing volumes of magnetized3He gas, with the nuclear spins aligned rather than random. Rubidium vapor is optically pumped by a laser, and the polarized Rb polarizes3He through thehyperfine interaction.[53] Suchspin-polarized3He cells are useful for neutron polarization measurements and for producing polarized neutron beams for other purposes.[54]

The resonant element inatomic clocks utilizes thehyperfine structure of rubidium's energy levels, and rubidium is useful for high-precision timing. It is used as the main component of secondary frequency references (rubidium oscillators) in cell site transmitters and other electronic transmitting, networking, and test equipment. Theserubidium standards are often used withGNSS to produce a "primary frequency standard" that has greater accuracy and is less expensive than caesium standards.[55][56] Such rubidium standards are often mass-produced for thetelecommunications industry.[57]

Other potential or current uses of rubidium include a working fluid in vapor turbines, as agetter invacuum tubes, and as aphotocell component.[58] Rubidium is also used as an ingredient in special types of glass, in the production ofsuperoxide by burning inoxygen, in the study ofpotassiumion channels in biology, and as the vapor in atomicmagnetometers.[59] In particular,87Rb is used with other alkali metals in the development of spin-exchange relaxation-free(SERF) magnetometers.[59]

Rubidium-82 is used forpositron emission tomography. Rubidium is very similar to potassium, and tissue with high potassium content will also accumulate the radioactive rubidium. One of the main uses ismyocardial perfusion imaging. As a result of changes in theblood–brain barrier in brain tumors, rubidium collects more in brain tumors than normal brain tissue, allowing the use of radioisotope rubidium-82 innuclear medicine to locate and image brain tumors.[60] Rubidium-82 has a very short half-life of 76 seconds, and the production from decay ofstrontium-82 must be done close to the patient.[61]

Rubidium was tested for the influence on manic depression and depression.[62][63] Dialysis patients suffering from depression show a depletion in rubidium, and therefore a supplementation may help during depression.[64] In some tests the rubidium was administered as rubidium chloride with up to 720 mg per day for 60 days.[65][66]

Rubidium
Hazards
GHS labelling:
GHS02: FlammableGHS05: Corrosive
Danger
H260,H314
P223,P231+P232,P280,P305+P351+P338,P370+P378,P422[67]
NFPA 704 (fire diamond)
Chemical compound

Precautions and biological effects

[edit]

Rubidium reacts violently with water and can cause fires. To ensure safety and purity, this metal is usually kept under drymineral oil or sealed in glass ampoules in an inert atmosphere. Rubidium formsperoxides on exposure even to a small amount of air diffused into the oil, and storage is subject to similar precautions as the storage of metallicpotassium.[68]

Rubidium, like sodium and potassium, almost always has +1oxidation state when dissolved in water, even in biological contexts. The human body tends to treat Rb+ ions as if they were potassium ions, and therefore concentrates rubidium in the body'sintracellular fluid (i.e., inside cells).[69] The ions are not particularly toxic; a 70 kg person contains on average 0.36 g of rubidium, and an increase in this value by 50 to 100 times did not show negative effects in test persons.[70] Thebiological half-life of rubidium in humans measures 31–46 days.[62] Although a partial substitution of potassium by rubidium is possible, when more than 50% of the potassium in the muscle tissue of rats was replaced with rubidium, the rats died.[71][72]

References

[edit]
  1. ^"Standard Atomic Weights: Rubidium".CIAAW. 1969.
  2. ^Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04)."Standard atomic weights of the elements 2021 (IUPAC Technical Report)".Pure and Applied Chemistry.doi:10.1515/pac-2019-0603.ISSN 1365-3075.
  3. ^abcArblaster, John W. (2018).Selected Values of the Crystallographic Properties of Elements. Materials Park, Ohio: ASM International.ISBN 978-1-62708-155-9.
  4. ^abHaynes, William M., ed. (2011).CRC Handbook of Chemistry and Physics (92nd ed.). Boca Raton, Florida:CRC Press. p. 4.122.ISBN 1-4398-5511-0.
  5. ^Rb(–1) is known inrubidides; seeJohn E. Ellis (2006). "Adventures with Substances Containing Metals in Negative Oxidation States".Inorganic Chemistry.45 (8).doi:10.1021/ic052110i.
  6. ^Lide, D. R., ed. (2005). "Magnetic susceptibility of the elements and inorganic compounds".CRC Handbook of Chemistry and Physics(PDF) (86th ed.). Boca Raton (FL): CRC Press.ISBN 0-8493-0486-5.
  7. ^Weast, Robert (1984).CRC, Handbook of Chemistry and Physics. Boca Raton, Florida: Chemical Rubber Company Publishing. pp. E110.ISBN 0-8493-0464-4.
  8. ^Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021)."The NUBASE2020 evaluation of nuclear properties"(PDF).Chinese Physics C.45 (3): 030001.doi:10.1088/1674-1137/abddae.
  9. ^Lenk, Winfried; Prinz, Horst; Steinmetz, Anja (2010). "Rubidium and Rubidium Compounds".Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH.doi:10.1002/14356007.a23_473.pub2.ISBN 978-3527306732.
  10. ^"Rubidium (Rb)".American Elements (americanelements.com). Retrieved2024-03-27.
  11. ^abOhly, Julius (1910)."Rubidium".Analysis, detection and commercial value of the rare metals. Mining Science Pub. Co. – via Google books.
  12. ^ab"Rubidium". Element information, properties and uses.www.rsc.org. Periodic Table. Retrieved2024-09-09.
  13. ^Holleman, Arnold F.; Wiberg, Egon; Wiberg, Nils (1985). "Vergleichende Übersicht über die Gruppe der Alkalimetalle" [Brief overview of the Alkalai metal group].Lehrbuch der Anorganischen Chemie [Textbook of Inorganic Chemistry] (in German) (91–100 ed.). Walter de Gruyter. pp. 953–955.ISBN 978-3-11-007511-3.
  14. ^Ahrens, L.H.; Pinson, W.H.; Kearns, Makgaret M. (1952-01-01)."Association of rubidium and potassium and their abundance in common igneous rocks and meteorites".Geochimica et Cosmochimica Acta.2 (4):229–242.Bibcode:1952GeCoA...2..229A.doi:10.1016/0016-7037(52)90017-3.ISSN 0016-7037.
  15. ^abcHart, William A.; Beumel Jr., O.F .; Whaley, Thomas P. (1973).The Chemistry of Lithium, Sodium, Potassium, Rubidium, Cesium and Francium. Pergamon.doi:10.1016/c2013-0-05695-2.ISBN 978-0-08-018799-0.
  16. ^Cotton, F. Albert; Wilkinson, Geoffrey (1972).Advanced inorganic chemistry: a comprehensive text (3d ed., completely rev ed.). New York: Interscience Publishers. p. 190.ISBN 978-0-471-17560-5.
  17. ^Stanford University."Information on Alkali Metals – Stanford Environmental Health & Safety". Retrieved2024-09-12.
  18. ^Jim Clark."Reactions of the Group 1 elements with water".www.chemguide.co.uk. Retrieved2024-09-12.
  19. ^Maustellar, J. W, F Tepper, and S. J. (Sheridan Joseph) Rodgers. "Alkali Metal Handling and Systems Operating Techniques" Prepared under the Direction of the American Nuclear Society for the United States Atomic Energy Commission. New York: Gordon and Breach, 1968.
  20. ^Smart, Lesley; Moore, Elaine (1995)."RbAg4I5".Solid state chemistry: an introduction. CRC Press. pp. 176–177.ISBN 978-0-7487-4068-0.
  21. ^Bradley, J. N.; Greene, P. D. (1967). "Relationship of structure and ionic mobility in solid MAg4I5".Trans. Faraday Soc.63: 2516.doi:10.1039/TF9676302516.
  22. ^Greenwood, Norman N.; Earnshaw, Alan (1997).Chemistry of the Elements (2nd ed.).Butterworth-Heinemann.ISBN 978-0-08-037941-8.
  23. ^abAudi, Georges; Bersillon, Olivier; Blachot, Jean;Wapstra, Aaldert Hendrik (2003),"The NUBASE evaluation of nuclear and decay properties",Nuclear Physics A,729:3–128,Bibcode:2003NuPhA.729....3A,doi:10.1016/j.nuclphysa.2003.11.001
  24. ^Strong, W. W. (1909)."On the Possible Radioactivity of Erbium, Potassium and Rubidium".Physical Review. Series I.29 (2):170–173.Bibcode:1909PhRvI..29..170S.doi:10.1103/PhysRevSeriesI.29.170.
  25. ^Lide, David R; Frederikse, H. P. R (June 1995).CRC handbook of chemistry and physics: a ready-reference book of chemical and physical data. CRC-Press. pp. 4–25.ISBN 978-0-8493-0476-7.
  26. ^"Universal Nuclide Chart". nucleonica.Archived from the original on 2017-02-19. Retrieved2017-01-03.
  27. ^Planck Collaboration (2016). "Planck 2015 results. XIII. Cosmological parameters (See Table 4 on page 31 of pfd)".Astronomy & Astrophysics.594: A13.arXiv:1502.01589.Bibcode:2016A&A...594A..13P.doi:10.1051/0004-6361/201525830.S2CID 119262962.
  28. ^Attendorn, H.-G.; Bowen, Robert (1988)."Rubidium-Strontium Dating".Isotopes in the Earth Sciences. Springer. pp. 162–165.ISBN 978-0-412-53710-3.
  29. ^Walther, John Victor (2009) [1988]."Rubidium-Strontium Systematics".Essentials of geochemistry. Jones & Bartlett Learning. pp. 383–385.ISBN 978-0-7637-5922-3.
  30. ^abcdefButterman, William C.; Brooks, William E.; Reese, Robert G. Jr. (2003)."Mineral Commodity Profile: Rubidium"(PDF). United States Geological Survey. Retrieved2010-12-04.
  31. ^Wise, M. A. (1995). "Trace element chemistry of lithium-rich micas from rare-element granitic pegmatites".Mineralogy and Petrology.55 (13):203–215.Bibcode:1995MinPe..55..203W.doi:10.1007/BF01162588.S2CID 140585007.
  32. ^Norton, J. J. (1973)."Lithium, cesium, and rubidium—The rare alkali metals". In Brobst, D. A.; Pratt, W. P. (eds.).United States mineral resources. Vol. Paper 820. U.S. Geological Survey Professional. pp. 365–378. Archived fromthe original on 2010-07-21. Retrieved2010-09-26.
  33. ^Bolter, E.; Turekian, K.; Schutz, D. (1964). "The distribution of rubidium, cesium and barium in the oceans".Geochimica et Cosmochimica Acta.28 (9): 1459.Bibcode:1964GeCoA..28.1459B.doi:10.1016/0016-7037(64)90161-9.
  34. ^McSween Jr., Harry Y; Huss, Gary R (2010).Cosmochemistry. Cambridge University Press. p. 224.ISBN 978-0-521-87862-3.
  35. ^Teertstra, David K.;Cerny, Petr; Hawthorne, Frank C.; Pier, Julie; Wang, Lu-Min; Ewing, Rodney C. (1998). "Rubicline, a new feldspar from San Piero in Campo, Elba, Italy".American Mineralogist.83 (11–12 Part 1):1335–1339.Bibcode:1998AmMin..83.1335T.doi:10.2138/am-1998-11-1223.
  36. ^Enghag, Per (2004). "Rubidium and Caesium".Rubidium and Cesium.Encyclopedia of the Elements (1 ed.). Wiley. pp. 301–313.doi:10.1002/9783527612338.ch13.ISBN 978-3-527-30666-4.
  37. ^bulletin 585. United States. Bureau of Mines. 1995.
  38. ^"Cesium and Rubidium Hit Market".Chemical & Engineering News.37 (22):50–56. 1959.doi:10.1021/cen-v037n022.p050.
  39. ^abcKirchhoff, G.;Bunsen, R. (1861)."Chemische Analyse durch Spectralbeobachtungen"(PDF).Annalen der Physik und Chemie.189 (7):337–381.Bibcode:1861AnP...189..337K.doi:10.1002/andp.18611890702.hdl:2027/hvd.32044080591324.
  40. ^abWeeks, Mary Elvira (1932). "The discovery of the elements. XIII. Some spectroscopic discoveries".Journal of Chemical Education.9 (8):1413–1434.Bibcode:1932JChEd...9.1413W.doi:10.1021/ed009p1413.
  41. ^Ritter, Stephen K. (2003)."C&EN: It's Elemental: The Periodic Table – Cesium". American Chemical Society. Retrieved2010-02-25.
  42. ^Zsigmondy, Richard (2007).Colloids and the Ultra Microscope. Read books. p. 69.ISBN 978-1-4067-5938-9. Retrieved2010-09-26.
  43. ^Bunsen, R. (1863)."Ueber die Darstellung und die Eigenschaften des Rubidiums".Annalen der Chemie und Pharmacie.125 (3):367–368.doi:10.1002/jlac.18631250314.
  44. ^Lewis, G. M. (1952). "The natural radioactivity of rubidium".Philosophical Magazine. Series 7.43 (345):1070–1074.doi:10.1080/14786441008520248.
  45. ^Campbell, N. R.; Wood, A. (1908)."The Radioactivity of Rubidium".Proceedings of the Cambridge Philosophical Society.14: 15.
  46. ^"The 2001 Nobel Prize in Physics".Nobel Institute nobelprize.org (Press release). 2001. Retrieved2010-02-01.
  47. ^Levi, Barbara Goss (2001)."Cornell, Ketterle, and Wieman share Nobel Prize for Bose-Einstein condensates".Physics Today.54 (12):14–16.Bibcode:2001PhT....54l..14L.doi:10.1063/1.1445529.
  48. ^Koch, E.-C. (2002)."Special Materials in Pyrotechnics, Part II: Application of Caesium and Rubidium Compounds in Pyrotechnics".Journal Pyrotechnics.15:9–24. Archived fromthe original on 2011-07-13. Retrieved2010-01-29.
  49. ^Boikess, Robert S; Edelson, Edward (1981).Chemical principles. Harper & Row. p. 193.ISBN 978-0-06-040808-4.
  50. ^Eric Cornell; et al. (1996)."Bose-Einstein condensation (all 20 articles)".Journal of Research of the National Institute of Standards and Technology.101 (4):419–618.doi:10.6028/jres.101.045.PMC 4907621.PMID 27805098. Archived fromthe original on 2011-10-14. Retrieved2015-09-14.
  51. ^Martin, J. L.; McKenzie, C. R.; Thomas, N. R.; Sharpe, J. C.; Warrington, D. M.; Manson, P. J.; Sandle, W. J.; Wilson, A. C. (1999). "Output coupling of a Bose-Einstein condensate formed in a TOP trap".Journal of Physics B: Atomic, Molecular and Optical Physics.32 (12): 3065.arXiv:cond-mat/9904007.Bibcode:1999JPhB...32.3065M.doi:10.1088/0953-4075/32/12/322.S2CID 119359668.
  52. ^Chin, Cheng; Grimm, Rudolf; Julienne, Paul; Tiesinga, Eite (2010-04-29). "Feshbach resonances in ultracold gases".Reviews of Modern Physics.82 (2):1225–1286.arXiv:0812.1496.Bibcode:2010RvMP...82.1225C.doi:10.1103/RevModPhys.82.1225.S2CID 118340314.
  53. ^Gentile, T. R.; Chen, W. C.; Jones, G. L.; Babcock, E.; Walker, T. G. (2005)."Polarized3He spin filters for slow neutron physics"(PDF).Journal of Research of the National Institute of Standards and Technology.110 (3):299–304.doi:10.6028/jres.110.043.PMC 4849589.PMID 27308140. Archived fromthe original(PDF) on 2016-12-21. Retrieved2015-08-06.
  54. ^"Neutron spin filters based on polarized helium-3". NIST Center for Neutron Research 2002 Annual Report. Retrieved2008-01-11.
  55. ^Eidson, John C (2006-04-11)."GPS".Measurement, control, and communication using IEEE 1588. Springer. p. 32.ISBN 978-1-84628-250-8.
  56. ^King, Tim; Newson, Dave (1999-07-31)."Rubidium and crystal oscillators".Data network engineering. Springer. p. 300.ISBN 978-0-7923-8594-3.
  57. ^Marton, L. (1977-01-01)."Rubidium Vapor Cell".Advances in electronics and electron physics. Academic Press.ISBN 978-0-12-014644-4.
  58. ^Mittal (2009).Introduction To Nuclear And Particle Physics. Prentice-Hall Of India Pvt. Limited. p. 274.ISBN 978-81-203-3610-0.
  59. ^abLi, Zhimin; Wakai, Ronald T.; Walker, Thad G. (2006)."Parametric modulation of an atomic magnetometer".Applied Physics Letters.89 (13):23575531–23575533.Bibcode:2006ApPhL..89m4105L.doi:10.1063/1.2357553.PMC 3431608.PMID 22942436.
  60. ^Yen, C. K.; Yano, Y.; Budinger, T. F.; Friedland, R. P.; Derenzo, S. E.; Huesman, R. H.; O'Brien, H. A. (1982). "Brain tumor evaluation using Rb-82 and positron emission tomography".Journal of Nuclear Medicine.23 (6):532–7.PMID 6281406.
  61. ^Jadvar, H.; Anthony Parker, J. (2005)."Rubidium-82".Clinical PET and PET/CT. Springer. p. 59.ISBN 978-1-85233-838-1.
  62. ^abPaschalis, C.; Jenner, F. A.; Lee, C. R. (1978)."Effects of rubidium chloride on the course of manic-depressive illness".J R Soc Med.71 (9):343–352.doi:10.1177/014107687807100507.PMC 1436619.PMID 349155.
  63. ^Malekahmadi, P.; Williams, John A. (1984). "Rubidium in psychiatry: Research implications".Pharmacology Biochemistry and Behavior.21:49–50.doi:10.1016/0091-3057(84)90162-X.PMID 6522433.S2CID 2907703.
  64. ^Canavese, Caterina; Decostanzi, Ester; Branciforte, Lino; Caropreso, Antonio; Nonnato, Antonello; Sabbioni, Enrico (2001)."Depression in dialysis patients: Rubidium supplementation before other drugs and encouragement?".Kidney International.60 (3):1201–2.doi:10.1046/j.1523-1755.2001.0600031201.x.PMID 11532118.
  65. ^Lake, James A. (2006).Textbook of Integrative Mental Health Care. New York: Thieme Medical Publishers. pp. 164–165.ISBN 978-1-58890-299-3.
  66. ^Torta, R.; Ala, G.; Borio, R.; Cicolin, A.; Costamagna, S.; Fiori, L.; Ravizza, L. (1993). "Rubidium chloride in the treatment of major depression".Minerva Psichiatrica.34 (2):101–110.PMID 8412574.
  67. ^"Rubidium 276332".Sigma-Aldrich.
  68. ^Martel, Bernard; Cassidy, Keith (2004-07-01)."Rubidium".Chemical risk analysis: a practical handbook. Butterworth-Heinemann. p. 215.ISBN 978-1-903996-65-2.
  69. ^Relman, A. S. (1956)."The Physiological Behavior of Rubidium and Cesium in Relation to That of Potassium".The Yale Journal of Biology and Medicine.29 (3):248–62.PMC 2603856.PMID 13409924.
  70. ^Fieve, Ronald R.; Meltzer, Herbert L.; Taylor, Reginald M. (1971). "Rubidium chloride ingestion by volunteer subjects: Initial experience".Psychopharmacologia.20 (4):307–14.doi:10.1007/BF00403562.PMID 5561654.S2CID 33738527.
  71. ^Meltzer, H. L. (1991)."A pharmacokinetic analysis of long-term administration of rubidium chloride".Journal of Clinical Pharmacology.31 (2):179–84.doi:10.1002/j.1552-4604.1991.tb03704.x.PMID 2010564.S2CID 2574742. Archived fromthe original on 2012-07-09.
  72. ^Follis, Richard H. Jr. (1943)."Histological effects in rats resulting from adding rubidium or cesium to a diet deficient in potassium".AJP: Legacy Content.138 (2):246–250.doi:10.1152/ajplegacy.1943.138.2.246.

Further reading

[edit]
  • Meites, Louis (1963).Handbook of Analytical Chemistry (New York: McGraw-Hill Book Company, 1963)
  • Steck, Daniel A."Rubidium-87 D Line Data"(PDF). Los Alamos National Laboratory (technical report LA-UR-03-8638). Archived fromthe original(PDF) on 2013-11-02. Retrieved2008-02-09.

External links

[edit]
Authority control databases: NationalEdit this at Wikidata
Retrieved from "https://en.wikipedia.org/w/index.php?title=Rubidium&oldid=1278959662"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp