River in Ecuador, Peru
Napo river The Napo River to the east of
Coca Location Countries Physical characteristics Source • location Confluence of Jatunyaçu and Anzu,Ecuador • coordinates 1°2′48.6204″S 77°48′27.4392″W / 1.046839000°S 77.807622000°W /-1.046839000; -77.807622000 • elevation 430 m (1,410 ft) 2nd source • location Jatunyaçu–Verdeyaçu,Andes ,Ecuador • coordinates 0°38′22.6248″S 78°3′29.1924″W / 0.639618000°S 78.058109000°W /-0.639618000; -78.058109000 • elevation 3,419 m (11,217 ft) 3rd source • location Jatunyaçu–Mulatos,Andes ,Ecuador • coordinates 0°53′55.0464″S 78°24′32.8824″W / 0.898624000°S 78.409134000°W /-0.898624000; -78.409134000 • elevation 3,871 m (12,700 ft) 4th source • location Anzu River,Andes ,Ecuador • coordinates 1°23′30.408″S 78°4′48.7668″W / 1.39178000°S 78.080213000°W /-1.39178000; -78.080213000 • elevation 1,430 m (4,690 ft) Mouth Amazon River • location
70 km (43 mi) downstream fromIquitos ,Loreto Region ,Peru • coordinates
3°27′28″S 72°43′3″W / 3.45778°S 72.71750°W /-3.45778; -72.71750 • elevation
78 m (256 ft) Length 1,130 km (700 mi)[ 1] Basin size 103,307.79 km2 (39,887.36 sq mi)[ 2] Discharge • location Francisco de Orellana (near mouth) • average (Period: 1971–2000)7,147.8 m3 /s (252,420 cu ft/s)[ 2] • minimum 3,200 m3 /s (110,000 cu ft/s)[ 3] • maximum 10,800 m3 /s (380,000 cu ft/s)[ 3] Discharge • location Mazán (Bella Vista ) • average (Period: 1991–2023)7,000 m3 /s (250,000 cu ft/s)[ 4] • minimum 3,250 m3 /s (115,000 cu ft/s)[ 4] • maximum 11,200 m3 /s (400,000 cu ft/s)[ 4] Discharge • location Santa Clotilde • average (Period: 2002–2011)5,895 m3 /s (208,200 cu ft/s)[ 5] Discharge • location Nueva Rocafuerte • average (Period: 2001–2009)2,032 m3 /s (71,800 cu ft/s)[ 5] Discharge • location Puerto Francisco de Orellana • average (Period: 2001–2009)1,105 m3 /s (39,000 cu ft/s)[ 5] Basin features Progression Amazon →Atlantic Ocean River system Amazon River Tributaries • left Jatunyaçu, Misahualli, Payamino,Coca ,Aguarico , Tamboyaçu • right Anzu, Llocullón,Tiputini ,Yasuní , Anahiri,Curaray , Tacshacuraray, Mazán
TheNapo River (Spanish :Río Napo ) is atributary to theAmazon River that rises inEcuador on the flanks of the eastAndean volcanoes ofAntisana , Sincholagua andCotopaxi .
The total length is 1,075 km (668 mi). The river drains an area of ca 103,000 km2 . The mean annual discharge atMazán 6,800 m3 /s (240,000 cu ft/s).[ 6] [ 7] [ 8]
Village along the west bank of Napo River in Peru, a few miles above confluence with the Amazon. The land visible beyond the waterway is an island in the river. Before it reaches the plains it receives a great number of small streams from impenetrable, saturated and much broken mountainous districts, where the dense and varied vegetation seems to fight for every piece of ground. From the north it is joined by theCoca River , having its sources in the gorges ofCayambe volcano on theequator , and also a powerful river, theAguarico having its headwaters between Cayambe and theColombia frontier.From the west, it receives a secondary tributary, theCuraray , from theAndean slopes, between Cotopaxi and theTungurahua volcano . From its Coca branch to the mouth of the Curaray the Napo is full of snags and shelving sandbanks and throws out numerous canoes among jungle-tangled islands, which in thewet season are flooded, giving the river an immense width. From the Coca to the Amazon it runs through a forested plain where not a hill is visible from the river - its uniformly level banks being only interrupted byswamps andlagoons . From the Amazon the Napo is navigable for river craft up to its Curaray branch, a distance of about 216 mi (348 km), and perhaps a bit further; thence, by painful canoe navigation, its upper waters may be ascended as far asSanta Rosa , the usual point of embarkation for any venturesome traveller who descends from theQuito tableland. The Coca river may be penetrated as far up as its middle course, where it is jammed between two mountain walls, in a deep canyon, along which it dashes over high falls and numerous reefs. This is the stream made famous by the expedition of the Spanishconquistador Gonzalo Pizarro .
Hydrometric stations on the Napo River:
Station River kilometer (rkm)Elevation (m)Drainage basin (km2 )
Averagedischarge (m3 /s)
[ 9] [ 2] [ 10] Lower Napo Francisco de Orellana 0 78 103,307.79 7,147.8 6,611 Mazán 79.76 85 100,518 7,033 6,464.5 Bellavista 194.51 105 90,305.3 6,416.1 – Santa Clotilde 256.24 113 85,770 6,124.4 5,700 Campo Serio 421.35 140 50,342.9 3,430.3 – Cabo Pantoja 546.8 166 44,698.2 3,007.5 3,280 Nuevo Rocafuerte 574.1 173 27,489.4 1,937.3 2,032 Pañacocha 673 203 21,731.4 1,552.1 – Upper Napo Puerto Francisco de Orellana 782 243 12,343 1,016 1,105 Puerto Napo 950 427 4,182.4 260.9 377.6
Napo River atBellavista average (Q), dominante (Qd ) discharge (m3 /s) andsediment load (S – million ton/year). Period from 1991/09–2009/08:
Water year Q S Qd Water year Q S Qd 1991/1992 5,667 28.608 6,009 2001/2002 5,979 32.431 6,335 1992/1993 7,104 47.718 7,447 2002/2003 5,669 32.154 6,312 1993/1994 8,013 67.159 8,583 2003/2004 6,148 41.916 7,054 1994/1995 6,055 34.801 6,525 2004/2005 6,456 37.953 6,767 1995/1996 5,956 34.017 6,463 2005/2006 6,143 34.77 6,523 1996/1997 6,262 38.258 6,790 2006/2007 6,535 40.344 6,942 1997/1998 9,839 105.956 10,354 2007/2008 6,615 40.832 6,977 1998/1999 6,839 51.48 7,686 2008/2009 7,428 52.504 7,749 1999/2000 6,725 49.735 7,576 2000/2001 6,452 38.527 6,810 Average 6,660 44.953 7,161
[ 8]
Napo River atBellavista average, minimum and maximum discharge (m3 /s). Period from 2009/09 to 2023/08:
Water year Mean Min Max Water year Mean Min Max 2009/2010 7,177 2016/2017 7,273.6 3,200 11,150 2010/2011 5,768.2 1,649 10,860 2017/2018 7,284 1,550 13,500 2011/2012 7,447.4 2,894 12,230 2018/2019 8,234 2,850 12,200 2012/2013 7,452.7 3,102 11,230 2019/2020 8,100 3,100 12,700 2013/2014 8,652 3,230 13,700 2020/2021 8,410 3,620 14,000 2014/2015 9,336 4,810 13,450 2021/2022 6,855 2,078 13,500 2015/2016 5,761 498.6 10,200 2022/2023 5,849 1,201 15,200
Minimum 498.6 m3 /s (2016/02); Maximum: 15,820 m3 /s (2015/07);[ 4] [ 11]
Napo River atBellavista average, maximum, minimum and multiannual average (normal) discharge (m3 /s) and anomaly (%):
Mean Max Min Normal (%) 2010/09 – 2011/08 SEP 2,620.5 3,089 1,969 5,121.2 –49 OCT 2,413.5 3,061 1,649 4,898.6 –51 NOV 3,818.7 4,778 2,696 5,595.1 –32 DEC 4,774.1 6,240 4,148 5,660.6 –16 JAN 3,604.2 5,001 2,174 4,580.7 –21 FEB 2,480.7 3,478 1,920 4,386.9 –43 MAR 4,753.4 7,127 3,790 5,824.1 –18 APR 9,206.8 10,240 7,865 7,502.4 23 MAY 9,561.5 10,040 8,348 8,941.3 7 JUN 10,193.8 10,860 8,821 9,422.9 8 JUL 9,846.3 10,590 7,904 8,844.7 11 AUG 5,944.6 8,658 3,758 6,610.8 –10 Mean 5,768.2 6,930 4,587 6,449.1 –12 2011/09 – 2012/08 SEP 4,551.3 5,441 3,757 5,121.2 11 OCT 5,344.9 6,995 2,894 4,898.6 9 NOV 4,427 6,878 3,023 5,595.1 –21 DEC 6,536.8 9,160 5,205 5,660.6 15 JAN 7,998.7 9,501 4,868 4,580.7 75 FEB 6,536.8 8,302 5,155 4,386.9 49 MAR 9,557.2 12,150 5,417 5,824.1 64 APR 11,843.7 12,230 10,870 7,502.4 58 MAY 10,322.7 10,790 9,702 8,941.3 15 JUN 8,878.8 9,961 7,011 9,422.9 –6 JUL 8,189.3 9,228 7,197 8,844.7 –7 AUG 5,182 7,605 3,975 6,612.4 –22 Mean 7,447.4 9,020 5,756 6,449.2 15.5 2012/09 – 2013/08 SEP 5,037 7,822 3,249 5,096 –1 OCT 5,113 6,457 4,632 4,918 4 NOV 4,130 5,660 3,102 5,567 –26 DEC 4,755 6,838 3,568 5,698 –17 JAN 7,589 9,183 3,854 4,723 61 FEB 5,851 9,071 4,170 4,465 31 MAR 10,060 10,740 9,127 5,973 68 APR 9,405 10610 8,675 7,683 22 MAY 8,322 10,570 6,932 8,999 –8 JUN 10,495 11,230 9,743 9,400 12 JUL 9,675 10,410 8,402 8,817 10 AUG 9,001 9,776 8,386 6,551 37 Mean 7,452.7 9,030 6,153 6,490.8 15
[ 12] [ 13] [ 14]
Napo River average discharge: Period Discharge Ref. Francisco de Orellana (near mouth)
3°27′28″S 72°43′3″W / 3.45778°S 72.71750°W /-3.45778; -72.71750
2010–2015 7,400 m3 /s (260,000 cu ft/s) [ 15] 7,500 m3 /s (260,000 cu ft/s) [ 3] 1971–2000 7,147.8 m3 /s (252,420 cu ft/s) [ 2] 8,936 m3 /s (315,600 cu ft/s) [ 16] 4,555.23 m3 /s (160,866 cu ft/s) [ 17] Bellavista (Mazán)1930–2006 6,464 m3 /s (228,300 cu ft/s) [ 18] 1981–2020 6,800 m3 /s (240,000 cu ft/s) [ 6] 1989–2010 6,360 m3 /s (225,000 cu ft/s)(Q–dominante: 6,865 m3 /s (242,400 cu ft/s)
[ 19] 1991–2009 6,660 m3 /s (235,000 cu ft/s) [ 8] 1997–2015 6,734.2 m3 /s (237,820 cu ft/s) [ 20] 2000–2011 6,461 m3 /s (228,200 cu ft/s) [ 5] 2001–2012 6,758 m3 /s (238,700 cu ft/s) [ 21] 2001–2009 6,369 m3 /s (224,900 cu ft/s) [ 8] 2002–2008 6,489 m3 /s (229,200 cu ft/s) [ 22] 2003–2009 6,855 m3 /s (242,100 cu ft/s) [ 23] 2004–2010 6,609 m3 /s (233,400 cu ft/s) [ 24] 2001–2005 6,976 m3 /s (246,400 cu ft/s) [ 7] 2004–2006 6,267 m3 /s (221,300 cu ft/s) [ 7] 2016–2017 9,338 m3 /s (329,800 cu ft/s) [ 25] 1971–2000 7,032 m3 /s (248,300 cu ft/s) [ 2]
List of the major tributaries of the Napo River (from the mouth upwards):
Lefttributary
Righttributary
Length (km) Basin size (km2 ) * Average discharge (m3 /s)Napo 1,089.03 103,307.79 7,147.8 Lower Napo Sucusari 590.7 39.8 Mazán 509.11 7,721.3 532.9 Yanayaçu 1,340 89 Zapote 140.8 9.3 Papaya 278 17.5 Tacshacuraray 203.1 2,760.5 196.5 Huirina 610 33.2 Tamboryaçu 4,958 327.2 Pucara 827 50.4 Curaray 772.77 26,704.7 2,044.4 Tarapoto 679 46.1 Gomez 424.8 32.6 Loro Caparin 794.1 61.8 Anshiri 2,682.5 202.1 Santa Maria 1,471.5 107.8 Aguarico 502.5 13,404.5 889.3 Yasuní 238.5 3,386.8 237.7 Tiputini 380.4 4,423.1 320.2 Huiririma 13.2 Cariyuturi 253.5 18.3 Pañyaçu 80 876.7 68.4 Indillana 71.8 636.3 51.5 Itaya 120.6 9.6 Jivino 121.7 707.9 56 Blanco 249 17.6 Coca 245.1 5,308.1 338.9 Upper Napo Payamino 110.4 2,012.6 171.2 Suyunoyaçu 198.8 16.8 Suno 96.7 1,891.4 161.2 Arajuno 835.9 97.9 Pusuno 160.2 15.2 Misahuallí 68.7 1,659.6 170.6 Jatunyaçu 107 3,221.2 302.7 Anzu 69.7 817.1 75
* Period: 1971–2000[ 2]
^ Ziesler, R.; Ardizzone, G.D. (1979). "Amazon River System".The Inland waters of Latin America .Food and Agriculture Organization of the United Nations .ISBN 92-5-000780-9 .Archived from the original on 8 November 2014. ^a b c d e f "Amazon" .^a b c Charles J., Vörösmarty; Berrien, Moore; Annette L., Grace; M. Patricia, Gildea (1989).CONTINENTAL SCALE MODELS OF WATER BALANCE AND FLUVIAL TRANSPORT: AN APPLICATIONS TO SOUTH AMERICA (PDF) . Vol. 3. p. 241-265. ^a b c d "Reportes hidrológicos" .Archived from the original on 2023-10-03. Retrieved2023-10-03 .^a b c d "6_1-6_Linea Ambiental" (PDF) . Archived fromthe original (PDF) on 2014-06-07. Retrieved2021-10-15 .^a b Claire, F. Beveridge; Jhan-Carlo, Espinoza; Simone, Athayde; Sandra, Bibiana Correa; Thiago, B. A. Couto; Sebastian, A. Heilpern; Clinton, N. Jenkins; Natalia, C. Piland; Renata, Utsunomiya; Sly, Wongchuig; Elizabeth, P. Anderson (2024)."The Andes–Amazon–Atlantic pathway: A foundational hydroclimate system for social–ecological system sustainability" .Proceedings of the National Academy of Sciences .121 (22): e2306229121.Bibcode :2024PNAS..12106229B .doi :10.1073/pnas.2306229121 .PMC 11145265 .PMID 38722826 . ^a b c Christophoul, Frédéric (January 2009)."Sediment budget of the Napo River, Amazon basin, Ecuador and Peru" .www.academia.edu Hydrological …, 2009 . ^a b c d ESTUDIO BINACIONAL DE NAVEGABILIDAD DEL RÍO NAPO (PDF) . 2010.^ "Hydro-SHEDS" .^ "SO-HYBAM" .^ "Senamhi" . 7 September 2021.Archived from the original on 28 March 2023. Retrieved28 March 2023 .^ "EVALUACIÓN HIDROLÓGICA DE LAS CUENCAS AMAZÓNICAS PERUANAS – OCTUBRE 2011" .Archived from the original on 2023-03-28. Retrieved2023-03-28 .^ "EVALUACIÓN HIDROLÓGICA DE LAS CUENCAS AMAZÓNICAS PERUANAS – OCTUBRE 2012" .Archived from the original on 2023-03-28. Retrieved2023-03-28 .^ "BOLETIN EXTRAORDINARIO DE LA EVALUACIÓN HIDROLÓGICA Y PLUVIOMÉTRICA EN LA CUENCA AMAZÓNICA PERUANA – AGOSTO 2013" . Archived fromthe original on 2021-11-02. Retrieved2021-11-02 .^ William, Santini (2019).An index concentration method for suspended load monitoring in large rivers of the Amazonian foreland .doi :10.5194/esurf-2018-93 . ^ "Oficina Nacional de Evaluación de Recursos Naturales (ONERN)" .^ "Empresa de Electricidad del Perú S.A.-ELECTROPERU-Plataforma del Estado Peruano" . 19 May 2023.^ "HYBAM" .^ Julio Isaac, Montenegro Gambini (2015).Hydrodynamic and sediment transport modeling in a bend of napo amazonian river: Morphodynamics and infrastructure implications .doi :10.13140/RG.2.2.27735.68008 . ^ Jamie, Towner (2019)."Assessing the performance of global hydrological models for capturing peak river flows in the Amazon basin" (PDF) .Archived (PDF) from the original on 14 October 2023. Retrieved28 March 2022 . ^ Filizola, Naziano; Melo, Edileuza; Armijos, Elisa; McGlynn, John (2015)."Preliminary Analysis of Potential for River Hydrokinetic Energy Tecnologies in the Amazon Basin" .Idb Publications .doi :10.18235/0000222 (inactive 10 January 2025). {{cite journal }}
: CS1 maint: DOI inactive as of January 2025 (link )^ Alain, Laraque; Jean-Sébastien, Moquet (2011)."Chemical weathering and atmospheric/soil CO2 uptake in the Andean and Foreland Amazon basins" .Chemical Geology .287 (1– 2):1– 26.Bibcode :2011ChGeo.287....1M .doi :10.1016/j.chemgeo.2011.01.005 . ^ Ricardo Zubieta, Barragán (2013).Modelado hidrológico distribuido de la cuenca amazónica peruana utilizando precipitación obtenida por satélite . ^ Philippe, Vauchel; Jorge Luis, Carranza Vasle; Alain, Crave (2013)."Suspended sediment dynamics in the Amazon River of Peru" .Journal of South American Earth Sciences .44 : 75.Bibcode :2013JSAES..44...75A .doi :10.1016/j.jsames.2012.09.002 . ^ Ricardo, Zubieta; Augusto, Getirana; Jhan Carlo, Espinoza; Waldo, Lavado-Casimiro; Luis, Aragon (2017)."Hydrological modeling of the Peruvian-Ecuadorian Amazon Basin using GPM-IMERG satellite-based precipitation dataset" .Hydrology and Earth System Sciences .21 (7):3543– 3555.Bibcode :2017HESS...21.3543Z .doi :10.5194/hess-21-3543-2017 .PMC 7402198 .PMID 32753831 .