Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Artin–Tits group

From Wikipedia, the free encyclopedia
(Redirected fromRight angled Artin group)
Family of infinite discrete groups

In themathematical area ofgroup theory,Artin groups, also known asArtin–Tits groups orgeneralized braid groups, are a family of infinite discretegroups defined by simplepresentations. They are closely related withCoxeter groups. Examples arefree groups,free abelian groups,braid groups, and right-angled Artin–Tits groups, among others.

The groups are named afterEmil Artin, due to his early work on braid groups in the 1920s to 1940s,[1] andJacques Tits who developed the theory of a more general class of groups in the 1960s.[2]

Definition

[edit]

An Artin–Tits presentation is a grouppresentationSR{\displaystyle \langle S\mid R\rangle } whereS{\displaystyle S} is a (usually finite) set of generators andR{\displaystyle R} is a set of Artin–Tits relations, namely relations of the formstst=tsts{\displaystyle stst\ldots =tsts\ldots } for distincts,t{\displaystyle s,t} inS{\displaystyle S}, where both sides have equal lengths, and there exists at most one relation for each pair of distinct generatorss,t{\displaystyle s,t}. An Artin–Tits group is a group that admits an Artin–Tits presentation. Likewise, anArtin–Tits monoid is amonoid that, as a monoid, admits an Artin–Tits presentation.

Alternatively, an Artin–Tits group can be specified by the set of generatorsS{\displaystyle S} and, for everys,t{\displaystyle s,t} inS{\displaystyle S}, the natural numberms,t2{\displaystyle m_{s,t}\geqslant 2} that is the length of the wordsstst{\displaystyle stst\ldots } andtsts{\displaystyle tsts\ldots } such thatstst=tsts{\displaystyle stst\ldots =tsts\ldots } is the relation connectings{\displaystyle s} andt{\displaystyle t}, if any. By convention, one putsms,t={\displaystyle m_{s,t}=\infty } when there is no relationstst=tsts{\displaystyle stst\ldots =tsts\ldots } . Formally, if we defines,tm{\displaystyle \langle s,t\rangle ^{m}} to denote an alternating product ofs{\displaystyle s} andt{\displaystyle t} of lengthm{\displaystyle m}, beginning withs{\displaystyle s} — so thats,t2=st{\displaystyle \langle s,t\rangle ^{2}=st},s,t3=sts{\displaystyle \langle s,t\rangle ^{3}=sts}, etc. — the Artin–Tits relations take the form

s,tms,t=t,smt,s, where ms,t=mt,s{2,3,,}.{\displaystyle \langle s,t\rangle ^{m_{s,t}}=\langle t,s\rangle ^{m_{t,s}},{\text{ where }}m_{s,t}=m_{t,s}\in \{2,3,\ldots ,\infty \}.}

The integersms,t{\displaystyle m_{s,t}} can be organized into asymmetric matrix, known as theCoxeter matrix of the group.

IfSR{\displaystyle \langle S\mid R\rangle } is an Artin–Tits presentation of an Artin–Tits groupA{\displaystyle A}, thequotient ofA{\displaystyle A} obtained by adding the relations2=1{\displaystyle s^{2}=1} for eachs{\displaystyle s} ofR{\displaystyle R} is aCoxeter group.Conversely, ifW{\displaystyle W} is a Coxeter group presented by reflections and the relationss2=1{\displaystyle s^{2}=1} are removed, the extension thus obtained is an Artin–Tits group. For instance, the Coxeter group associated with then{\displaystyle n}-strand braid group is thesymmetric group of allpermutations of{1,,n}{\displaystyle \{1,\ldots ,n\}}.

Examples

[edit]

General properties

[edit]

Artin–Tits monoids are eligible forGarside methods based on the investigation of their divisibility relations, and are well understood:

Very few results are known for general Artin–Tits groups. In particular, the following basic questions remainopen in the general case:

– solving theword andconjugacy problems — which areconjectured to be decidable,
– determining torsion — which is conjectured to be trivial,
– determining the center — which is conjectured to be trivial or monogenic in the case when the group is not a direct product ("irreducible case"),
– determining the cohomology — in particular solving theK(π,1){\displaystyle K(\pi ,1)} conjecture, i.e., finding an acyclic complex whosefundamental group is the considered group.

Partial results involving particular subfamilies are gathered below. Among the few known general results, one can mention:

Particular classes of Artin–Tits groups

[edit]

Several important classes of Artin groups can be defined in terms of the properties of the Coxeter matrix.

Artin–Tits groups of spherical type

[edit]

Right-angled Artin groups

[edit]

Artin–Tits groups of large type

[edit]

Other types

[edit]

Many other families of Artin–Tits groups have been identified and investigated. Here we mention two of them.

See also

[edit]

References

[edit]
  1. ^Artin, Emil (1947). "Theory of Braids".Annals of Mathematics.48 (1):101–126.doi:10.2307/1969218.JSTOR 1969218.S2CID 30514042.
  2. ^Tits, Jacques (1966), "Normalisateurs de tores. I. Groupes de Coxeter étendus",Journal of Algebra,4:96–116,doi:10.1016/0021-8693(66)90053-6,MR 0206117
  3. ^Crisp, John; Paris, Luis (2001), "The solution to a conjecture of Tits on the subgroup generated by the squares of the generators of an Artin group",Inventiones Mathematicae,145 (1):19–36,arXiv:math/0003133,Bibcode:2001InMat.145...19C,doi:10.1007/s002220100138,MR 1839284
  4. ^Paris, Luis (2002), "Artin monoids inject in their groups",Commentarii Mathematici Helvetici,77 (3):609–637,arXiv:math/0102002,doi:10.1007/s00014-002-8353-z,MR 1933791
  5. ^Dyer, Matthew; Hohlweg, Christophe (2016), "Small roots, low elements, and the weak order in Coxeter groups",Advances in Mathematics,301:739–784,arXiv:1505.02058,doi:10.1016/j.aim.2016.06.022,MR 1839284
  6. ^Deligne, Pierre (1972), "Les immeubles des groupes de tresses généralisés",Inventiones Mathematicae,17 (4):273–302,Bibcode:1972InMat..17..273D,doi:10.1007/BF01406236,MR 0422673
  7. ^Brieskorn, Egbert;Saito, Kyoji (1972), "Artin-Gruppen und Coxeter-Gruppen",Inventiones Mathematicae,17 (4):245–271,Bibcode:1972InMat..17..245B,doi:10.1007/BF01406235,MR 0323910
  8. ^Charney, Ruth (1992), "Artin groups of finite type are biautomatic",Mathematische Annalen,292 (4):671–683,doi:10.1007/BF01444642,MR 1157320
  9. ^Crisp, John; Godelle, Eddy; Wiest, Bert (2009), "The conjugacy problem in subgroups of right-angled Artin groups",Journal of Topology,2 (3):442–460,doi:10.1112/jtopol/jtp018,MR 2546582
  10. ^Bestvina, Mladen; Brady, Noel (1997), "Morse theory and finiteness properties of groups",Inventiones Mathematicae,129 (3):445–470,Bibcode:1997InMat.129..445B,doi:10.1007/s002220050168,MR 1465330
  11. ^Leary, Ian (2018), "Uncountably many groups of type FP",Proceedings of the London Mathematical Society,117 (2):246–276,arXiv:1512.06609,doi:10.1112/plms.12135,MR 3851323
  12. ^Appel, Kenneth I.; Schupp, Paul E. (1983), "Artin Groups and Infinite Coxeter Groups",Inventiones Mathematicae,72 (2):201–220,Bibcode:1983InMat..72..201A,doi:10.1007/BF01389320,MR 0700768
  13. ^Peifer, David (1996), "Artin groups of extra-large type are biautomatic",Journal of Pure and Applied Algebra,110 (1):15–56,doi:10.1016/0022-4049(95)00094-1,MR 1390670
  14. ^Holt, Derek;Rees, Sarah (2012). "Artin groups of large type are shortlex automatic with regular geodesics".Proceedings of the London Mathematical Society.104 (3):486–512.arXiv:1003.6007.doi:10.1112/plms/pdr035.MR 2900234.
  15. ^Altobelli, Joe;Charney, Ruth (2000), "A geometric rational form for Artin groups of FC type",Geometriae Dedicata,79 (3):277–289,doi:10.1023/A:1005216814166,MR 1755729
  16. ^Dehornoy, Patrick (2017), "Multifraction reduction I: The 3-Ore case and Artin–Tits groups of type FC",Journal of Combinatorial Algebra,1 (2):185–228,arXiv:1606.08991,doi:10.4171/JCA/1-2-3,MR 3634782
  17. ^McCammond, Jon; Sulway, Robert (2017), "Artin groups of Euclidean type",Inventiones Mathematicae,210 (1):231–282,arXiv:1312.7770,Bibcode:2017InMat.210..231M,doi:10.1007/s00222-017-0728-2,MR 3698343
  18. ^Paolini, Giovanni; Salvetti, Mario (2019), "Proof of theK(π,1){\displaystyle K(\pi ,1)} conjecture for affine Artin groups",Inventiones Mathematicae,224 (2):487–572,arXiv:1907.11795,doi:10.1007/s00222-020-01016-y

Further reading

[edit]
Retrieved from "https://en.wikipedia.org/w/index.php?title=Artin–Tits_group&oldid=1317380463#Right-angled_Artin_groups"
Category:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp