Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Riemann zeta function

From Wikipedia, the free encyclopedia
Analytic function in mathematics
The Riemann zeta functionζ(z) plotted withdomain coloring[1]
The pole atz = 1 and two zeros on the critical line

TheRiemann zeta function orEuler–Riemann zeta function, denoted by the lowercaseGreek letterζ (zeta), is amathematical function of acomplex variable defined asζ(s)=n=11ns=11s+12s+13s+{\displaystyle \zeta (s)=\sum _{n=1}^{\infty }{\frac {1}{n^{s}}}={\frac {1}{1^{s}}}+{\frac {1}{2^{s}}}+{\frac {1}{3^{s}}}+\cdots } forRe(s) > 1, and itsanalytic continuation elsewhere.[2]

The Riemann zeta function plays a pivotal role inanalytic number theory and has applications inphysics,probability theory, and appliedstatistics.

Leonhard Euler first introduced and studied the function over thereals in the first half of the eighteenth century.Bernhard Riemann's 1859 article "On the Number of Primes Less Than a Given Magnitude" extended the Euler definition to acomplex variable, proved itsmeromorphic continuation andfunctional equation, and established a relation between itszeros andthe distribution of prime numbers. This paper also contained theRiemann hypothesis, aconjecture about the distribution of complex zeros of the Riemann zeta function that many mathematicians consider the most important unsolved problem inpure mathematics.[3]

The values of the Riemann zeta function at even positive integers were computed by Euler. The first of them,ζ(2), provides a solution to theBasel problem. In 1979,Roger Apéry proved the irrationality ofζ(3), and got the number named after him. The values at negative integer points, also found by Euler, arerational numbers and play an important role in the theory ofmodular forms. Many generalizations of the Riemann zeta function, such asDirichlet series,DirichletL-functions andL-functions, are known.

Definition

[edit]
Bernhard Riemann's articleOn the number of primes below a given magnitude

The Riemann zeta functionζ(s) is a function of a complex variables =σ +it, whereσ andt are real numbers. (The notations,σ, andt is used traditionally in the study of the zeta function, following Riemann.) WhenRe(s) =σ > 1, the function can be written as a converging summation or as an integral:

ζ(s)=n=11ns=1Γ(s)0xs1ex1dx,{\displaystyle \zeta (s)=\sum _{n=1}^{\infty }{\frac {1}{n^{s}}}={\frac {1}{\Gamma (s)}}\int _{0}^{\infty }{\frac {x^{s-1}}{e^{x}-1}}\,\mathrm {d} x\,,}

where

Γ(s)=0xs1exdx{\displaystyle \Gamma (s)=\int _{0}^{\infty }x^{s-1}\,e^{-x}\,\mathrm {d} x}

is thegamma function. The Riemann zeta function is defined for other complex values viaanalytic continuation of the function defined forσ > 1.

Leonhard Euler considered the above series in 1740 for positive integer values ofs, and laterChebyshev extended the definition toRe(s) > 1.[4]

The above series is a prototypicalDirichlet series thatconverges absolutely to ananalytic function fors such thatσ > 1 anddiverges for all other values ofs. Riemann showed that the function defined by the series on the half-plane of convergence can be continued analytically to all complex valuess ≠ 1. Fors = 1, the series is theharmonic series which diverges to+∞, andlims1(s1)ζ(s)=1.{\displaystyle \lim _{s\to 1}(s-1)\zeta (s)=1.}Thus the Riemann zeta function is ameromorphic function on the whole complex plane, which isholomorphic everywhere except for asimple pole ats = 1 withresidue1.

Euler's product formula

[edit]

In 1737, the connection between the zeta function andprime numbers was discovered by Euler, whoproved the identity

n=11ns=p prime11ps,{\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n^{s}}}=\prod _{p{\text{ prime}}}{\frac {1}{1-p^{-s}}},}

where, by definition, the left hand side isζ(s) and theinfinite product on the right hand side extends over all prime numbersp (such expressions are calledEuler products):

p prime11ps=112s113s115s117s1111s11ps{\displaystyle \prod _{p{\text{ prime}}}{\frac {1}{1-p^{-s}}}={\frac {1}{1-2^{-s}}}\cdot {\frac {1}{1-3^{-s}}}\cdot {\frac {1}{1-5^{-s}}}\cdot {\frac {1}{1-7^{-s}}}\cdot {\frac {1}{1-11^{-s}}}\cdots {\frac {1}{1-p^{-s}}}\cdots }

Both sides of the Euler product formula converge forRe(s) > 1. Theproof of Euler's identity uses only the formula for thegeometric series and thefundamental theorem of arithmetic. Since theharmonic series, obtained whens = 1, diverges, Euler's formula (which becomesΠpp/p − 1) implies that there areinfinitely many primes.[5] Since the logarithm ofp/(p − 1) is approximately1/p, the formula can also be used to prove the stronger result that the sum of the reciprocals of the primes is infinite. On the other hand, combining that with thesieve of Eratosthenes shows that the density of the set of primes within the set of positive integers is zero.

The Euler product formula can be used to calculate theasymptotic probability thats randomly selected integers within a bound are set-wisecoprime. Intuitively, the probability that any single number is divisible by a prime (or any integer)p is1/p. Hence the probability thats numbers are all divisible by this prime is1/ps, and the probability that at least one of them isnot is1 − 1/ps. Now, for distinct primes, these divisibility events are mutually independent because the candidate divisors are coprime (a number is divisible by coprime divisorsn andmif and only if it is divisible by nm, an event which occurs with probability 1/(nm)). Thus the asymptotic probability thats numbers are coprime is given by a product over all primes,[6]

p prime(11ps)=(p prime11ps)1=1ζ(s).{\displaystyle \prod _{p{\text{ prime}}}\left(1-{\frac {1}{p^{s}}}\right)=\left(\prod _{p{\text{ prime}}}{\frac {1}{1-p^{-s}}}\right)^{-1}={\frac {1}{\zeta (s)}}.}

Riemann's functional equation

[edit]

This zeta function satisfies thefunctional equationζ(s)=2sπs1 sin(πs2) Γ(1s) ζ(1s) ,{\displaystyle \zeta (s)=2^{s}\pi ^{s-1}\ \sin \left({\frac {\pi s}{2}}\right)\ \Gamma (1-s)\ \zeta (1-s)\ ,}whereΓ(s) is thegamma function. This is an equality of meromorphic functions valid on the wholecomplex plane. The equation relates values of the Riemann zeta function at the pointss and1 −s, in particular relating even positive integers with odd negative integers. Owing to the zeros of the sine function, the functional equation implies thatζ(s) has a simple zero at each even negative integers = −2n, known as thetrivial zeros ofζ(s). Whens is an even positive integer, the productsin(πs2)Γ(1s){\displaystyle \sin \left({\frac {\pi s}{2}}\right)\Gamma (1-s)} on the right is non-zero becauseΓ(1 −s) has a simplepole, which cancels the simple zero of the sine factor. Whens is0, the zero of the sine factor is cancelled by the simple pole ofζ(1).

Proof of Riemann's functional equation

A proof of the functional equation proceeds as follows:We observe that ifs > 0, then0x12s1en2πx dx =  Γ(s2)  ns πs2  .{\displaystyle \int _{0}^{\infty }x^{{\frac {1}{2}}s-1}e^{-n^{2}\pi x}\ \mathrm {d} x\ =\ {\frac {\ \Gamma \!\left({\frac {s}{2}}\right)\ }{\ n^{s}\ \pi ^{\frac {s}{2}}\ }}~.}

As a result, ifs > 1 then Γ(s2) ζ(s)  πs2  = n=1 0 xs21 en2πx dx = 0xs21n=1en2πx dx ,{\displaystyle {\frac {\ \Gamma \!\left({\frac {s}{2}}\right)\ \zeta (s)\ }{\ \pi ^{\frac {s}{2}}\ }}\ =\ \sum _{n=1}^{\infty }\ \int _{0}^{\infty }\ x^{{s \over 2}-1}\ e^{-n^{2}\pi x}\ \mathrm {d} x\ =\ \int _{0}^{\infty }x^{{s \over 2}-1}\sum _{n=1}^{\infty }e^{-n^{2}\pi x}\ \mathrm {d} x\ ,}with the inversion of the limiting processes justified by absolute convergence (hence the stricter requirement ons{\displaystyle s}).

For convenience, letψ(x) := n=1 en2πx,{\displaystyle \psi (x)\ :=\ \sum _{n=1}^{\infty }\ e^{-n^{2}\pi x},}which is a special case of thetheta function.

Becauseen2πx{\displaystyle e^{-n^{2}\pi x}} and1xen2πx{\displaystyle {\frac {1}{\sqrt {x}}}e^{\frac {-n^{2}\pi }{x}}} areFourier transform pairs,[7] then, by thePoisson summation formula, we haven= en2π x = 1 x   n= e n2π x ,{\displaystyle \sum _{n=-\infty }^{\infty }\ e^{-n^{2}\pi \ x}\ =\ {\frac {1}{\ {\sqrt {x\ }}\ }}\ \sum _{n=-\infty }^{\infty }\ e^{-{\frac {\ n^{2}\pi \ }{x}}}\ ,}so that 2 ψ(x)+1 = 1 x  ( 2 ψ(1x)+1 ) .{\displaystyle \ 2\ \psi (x)+1\ =\ {\frac {1}{\ {\sqrt {x\ }}\ }}\left(\ 2\ \psi \!\left({\frac {1}{x}}\right)+1\ \right)~.}

Henceπs2 Γ(s2) ζ(s) = 01 xs21 ψ(x) dx+1xs21ψ(x) dx .{\displaystyle \pi ^{-{\frac {s}{2}}}\ \Gamma \!\left({\frac {s}{2}}\right)\ \zeta (s)\ =\ \int _{0}^{1}\ x^{{\frac {s}{2}}-1}\ \psi (x)\ \mathrm {d} x+\int _{1}^{\infty }x^{{\frac {s}{2}}-1}\psi (x)\ \mathrm {d} x~.}

The right side is equivalent to01xs21(1 x   ψ(1x)+1 2x  12 ) dx+1xs21ψ(x) dx{\displaystyle \int _{0}^{1}x^{{\frac {s}{2}}-1}\left({\frac {1}{\ {\sqrt {x\ }}\ }}\ \psi \!\left({\frac {1}{x}}\right)+{\frac {1}{\ 2{\sqrt {x\ }}\ }}-{\frac {1}{2}}\ \right)\ \mathrm {d} x+\int _{1}^{\infty }x^{{s \over 2}-1}\psi (x)\ \mathrm {d} x}or1 s1 1 s +01 xs232 ψ(1 x ) dx+1 xs21 ψ(x) dx .{\displaystyle {\frac {1}{\ s-1\ }}-{\frac {1}{\ s\ }}+\int _{0}^{1}\ x^{{\frac {s}{2}}-{\frac {3}{2}}}\ \psi \!\left({\frac {1}{\ x\ }}\right)\ \mathrm {d} x+\int _{1}^{\infty }\ x^{{\frac {s}{2}}-1}\ \psi (x)\ \mathrm {d} x~.}

Soπs2 Γ( s 2) ζ(s) = 1 s(s1) +1 (xs212+xs21) ψ(x) dx{\displaystyle \pi ^{-{\frac {s}{2}}}\ \Gamma \!\left({\frac {\ s\ }{2}}\right)\ \zeta (s)\ =\ {\frac {1}{\ s(s-1)\ }}+\int _{1}^{\infty }\ \left(x^{-{\frac {s}{2}}-{\frac {1}{2}}}+x^{{\frac {s}{2}}-1}\right)\ \psi (x)\ \mathrm {d} x}which is convergent for alls, becauseψ(x) → 0 more quickly than any power ofx forx > 1, so the integral converges. As the RHS remains the same ifs is replaced by1 −s, Γ( s2 ) ζ( s )  πs2   =  Γ( 12s2 ) ζ( 1s )  π12s2 {\displaystyle {\frac {\ \Gamma \!\left(\ {\frac {s}{2}}\ \right)\ \zeta \!\left(\ s\ \right)\ }{\ \pi ^{{\frac {s}{2}}\ }\ }}\ =\ {\frac {\ \Gamma \!\left(\ {\frac {1}{2}}-{\frac {s}{2}}\ \right)\ \zeta \!\left(\ 1-s\ \right)\ }{\ \pi ^{{\frac {1}{2}}-{\frac {s}{2}}}\ }}}which is the functional equation attributed toBernhard Riemann.[8]

The functional equation above can be obtained using both thereflection formula and theduplication formula.

First collect terms ofπ:Γ(s2)ζ(s)=Γ(12s2)ζ(1s)πs12{\displaystyle \Gamma \left({\frac {s}{2}}\right)\zeta \left(s\right)=\Gamma \left({\frac {1}{2}}-{\frac {s}{2}}\right)\zeta \left(1-s\right)\pi ^{s-{\frac {1}{2}}}}

Then multiply both sides byΓ(1 −s/2) and use the reflection formula:Γ(1s2)Γ(s2)ζ(s)=Γ(1s2)Γ(12s2)ζ(1s)πs12{\displaystyle \Gamma \left(1-{\frac {s}{2}}\right)\Gamma \left({\frac {s}{2}}\right)\zeta \left(s\right)=\Gamma \left(1-{\frac {s}{2}}\right)\Gamma \left({\frac {1}{2}}-{\frac {s}{2}}\right)\zeta \left(1-s\right)\pi ^{s-{\frac {1}{2}}}}

ζ(s)=sin(πs2)Γ(1s2)Γ(12s2)ζ(1s)πs32{\displaystyle \zeta \left(s\right)=\sin \left({\frac {\pi s}{2}}\right)\Gamma \left(1-{\frac {s}{2}}\right)\Gamma \left({\frac {1}{2}}-{\frac {s}{2}}\right)\zeta \left(1-s\right)\pi ^{s-{\frac {3}{2}}}}

Use the duplication formula withz = (1 −s)/2ζ(s)=sin(πs2)211+sπΓ(1s)ζ(1s)πs32{\displaystyle \zeta \left(s\right)=\sin \left({\frac {\pi s}{2}}\right)2^{1-1+s}{\sqrt {\pi }}\Gamma \left(1-s\right)\zeta \left(1-s\right)\pi ^{s-{\frac {3}{2}}}}so thatζ(s)=sin(πs2)2sΓ(1s)ζ(1s)πs1{\displaystyle \zeta \left(s\right)=\sin \left({\frac {\pi s}{2}}\right)2^{s}\Gamma \left(1-s\right)\zeta \left(1-s\right)\pi ^{s-1}}

The functional equation was established by Riemann in his 1859 paper "On the Number of Primes Less Than a Given Magnitude" and used to construct the analytic continuation in the first place.

Riemann's xi function

[edit]
Main article:Riemann xi function

Riemann also found asymmetric version of the functional equation by settingξ(s)=s(s1)2×πs2Γ(s2)ζ(s)=(s1)πs2Γ(s2+1)ζ(s){\displaystyle \xi (s)={\frac {s(s-1)}{2}}\times \pi ^{-{\frac {s}{2}}}\Gamma \left({\frac {s}{2}}\right)\zeta (s)=(s-1)\pi ^{-{\frac {s}{2}}}\Gamma \left({\frac {s}{2}}+1\right)\zeta (s)}that satisfies:ξ(s)=ξ(1s) .{\displaystyle \xi (s)=\xi (1-s)~.}

Returning to the functional equation's derivation in the previous section, we haveξ(s)=12+s(s1)21(xs212+xs21)ψ(x)dx{\displaystyle \xi (s)={\frac {1}{2}}+{\frac {s(s-1)}{2}}\int _{1}^{\infty }\left(x^{-{\frac {s}{2}}-{\frac {1}{2}}}+x^{{\frac {s}{2}}-1}\right)\psi (x)dx}

Usingintegration by parts,ξ(s)=12[(sx1s2+(1s)xs2)ψ(x)]1+1(sx1s2+(1s)xs2)ψ(x)dx{\displaystyle \xi (s)={\frac {1}{2}}-\left[\left(sx^{\frac {1-s}{2}}+(1-s)x^{\frac {s}{2}}\right)\psi (x)\right]_{1}^{\infty }+\int _{1}^{\infty }\left(sx^{\frac {1-s}{2}}+(1-s)x^{\frac {s}{2}}\right)\psi '(x)dx}ξ(s)=12+ψ(1)+1(sx1s2+(1s)xs2)ψ(x)dx{\displaystyle \xi (s)={\frac {1}{2}}+\psi (1)+\int _{1}^{\infty }\left(sx^{\frac {1-s}{2}}+(1-s)x^{\frac {s}{2}}\right)\psi '(x)dx}

Using integration by parts again with a factorization ofx3/2,ξ(s)=12+ψ(1)2[x32ψ(x)(xs12+xs2)]1+21(xs12+xs2)ddx[x32ψ(x)]dx{\displaystyle \xi (s)={\frac {1}{2}}+\psi (1)-2\left[x^{\frac {3}{2}}\psi '(x)\left(x^{\frac {s-1}{2}}+x^{-{\frac {s}{2}}}\right)\right]_{1}^{\infty }+2\int _{1}^{\infty }\left(x^{\frac {s-1}{2}}+x^{-{\frac {s}{2}}}\right){\frac {d}{dx}}\left[x^{\frac {3}{2}}\psi '(x)\right]dx}ξ(s)=12+ψ(1)+4ψ(1)+21ddx[x32ψ(x)](xs12+xs2)dx{\displaystyle \xi (s)={\frac {1}{2}}+\psi (1)+4\psi '(1)+2\int _{1}^{\infty }{\frac {d}{dx}}\left[x^{\frac {3}{2}}\psi '(x)\right]\left(x^{\frac {s-1}{2}}+x^{-{\frac {s}{2}}}\right)dx}

As12+ψ(1)+4ψ(1)=0{\displaystyle {\frac {1}{2}}+\psi (1)+4\psi '(1)=0},ξ(s)=21ddx[x32ψ(x)](xs12+xs2)dx{\displaystyle \xi (s)=2\int _{1}^{\infty }{\frac {d}{dx}}\left[x^{\frac {3}{2}}\psi '(x)\right]\left(x^{\frac {s-1}{2}}+x^{-{\frac {s}{2}}}\right)dx}

Remove a factor ofx−1/4 to make the exponents in the remainder opposites.ξ(s)=21ddx[x32ψ(x)]x14(xs1/22+x1/2s2)dx{\displaystyle \xi (s)=2\int _{1}^{\infty }{\frac {d}{dx}}\left[x^{\frac {3}{2}}\psi '(x)\right]x^{-{\frac {1}{4}}}\left(x^{\frac {s-1/2}{2}}+x^{\frac {1/2-s}{2}}\right)dx}

Using thehyperbolic functions, namelycos(x) = cosh(ix), and lettings = 1/2 +it givesξ(s)=41ddx[x32ψ(x)]x14cos(t2logx)dx{\displaystyle \xi (s)=4\int _{1}^{\infty }{\frac {d}{dx}}\left[x^{\frac {3}{2}}\psi '(x)\right]x^{-{\frac {1}{4}}}\cos({\frac {t}{2}}\log x)dx}and by separating the integral and using thepower series forcos,ξ(s)=n=0a2nt2n{\displaystyle \xi (s)=\sum _{n=0}^{\infty }a_{2n}t^{2n}}which led Riemann to his famous hypothesis.

Zeros, the critical line, and the Riemann hypothesis

[edit]
Main article:Riemann hypothesis
The Riemann zeta function has no zeros to the right ofσ = 1 or (apart from the trivial zeros) to the left ofσ = 0 (nor can the zeros lie too close to those lines). Furthermore, the non-trivial zeros are symmetric about the real axis and the lineσ = 1/2 and, according to theRiemann hypothesis, they all lie on the lineσ = 1/2.
This image shows a plot of the Riemann zeta function along the critical line for real values oft running from 0 to 34. The first five zeros in the critical strip are clearly visible as the place where the spirals pass through the origin.
The real part (red) and imaginary part (blue) of the Riemann zeta function along the critical lineRe(s) = 1/2. The first non-trivial zeros can be seen atIm(s) =±14.135,±21.022 and±25.011.

The functional equation shows that the Riemann zeta function has zeros at−2, −4, .... These are called thetrivial zeros. They are trivial in the sense that their existence is relatively easy to prove, for example, fromsin(πs/2) being0 in the functional equation. The non-trivial zeros have captured far more attention because their distribution not only is far less understood but, more importantly, their study yields important results concerning prime numbers and related objects in number theory. It is known that any non-trivial zero lies in the open strip{sC{\displaystyle \mathbb {C} } | 0 < Re(s) < 1}, which is called thecritical strip. The set{sC{\displaystyle \mathbb {C} } | Re(s) = 1/2} is called thecritical line. TheRiemann hypothesis, considered one of the greatest unsolved problems in mathematics, asserts that all non-trivial zeros are on the critical line. In 1989, Conrey proved that more than 40% of the non-trivial zeros of the Riemann zeta function are on the critical line.[9] This has since been improved to 41.7%.[10]

For the Riemann zeta function on the critical line, seeZ-function.

First few nontrivial zeros[11][12]
Zero
1/2 ± 14.134725...i
1/2 ± 21.022040...i
1/2 ± 25.010858...i
1/2 ± 30.424876...i
1/2 ± 32.935062...i
1/2 ± 37.586178...i
1/2 ± 40.918719...i

Number of zeros in the critical strip

[edit]

LetN(T) be the number of zeros ofζ(s) in the critical strip0 < Re(s) < 1, whose imaginary parts are in the interval0 < Im(s) <T.Timothy Trudgian proved that, ifT >e, then[13]

|N(T)T2πlogT2πe|0.112logT+0.278loglogT+3.385+0.2T{\displaystyle \left|N(T)-{\frac {T}{2\pi }}\log {\frac {T}{2\pi e}}\right|\leq 0.112\log T+0.278\log \log T+3.385+{\frac {0.2}{T}}}.

Hardy–Littlewood conjectures

[edit]

In 1914,G. H. Hardy proved thatζ(1/2 +it) has infinitely many real zeros.[14][15]

Hardy andJ. E. Littlewood formulated two conjectures on the density and distance between the zeros ofζ(1/2 +it) on intervals of large positive real numbers. In the following,N(T) is the total number of real zeros andN0(T) the total number of zeros of odd order of the functionζ(1/2 +it) lying in the interval(0,T].

  1. For anyε > 0, there exists aT0(ε) > 0 such that when
    TT0(ε) and H=T14+ε,{\displaystyle T\geq T_{0}(\varepsilon )\quad {\text{ and }}\quad H=T^{{\frac {1}{4}}+\varepsilon },}
    the interval(T,T +H] contains a zero of odd order.
  2. For anyε > 0, there exists aT0(ε) > 0 andcε > 0 such that the inequality
    N0(T+H)N0(T)cεH{\displaystyle N_{0}(T+H)-N_{0}(T)\geq c_{\varepsilon }H}
    holds when
    TT0(ε) and H=T12+ε.{\displaystyle T\geq T_{0}(\varepsilon )\quad {\text{ and }}\quad H=T^{{\frac {1}{2}}+\varepsilon }.}

These two conjectures opened up new directions in the investigation of the Riemann zeta function.

Zero-free region

[edit]

The location of the Riemann zeta function's zeros is of great importance in number theory. Theprime number theorem is equivalent to the fact that there are no zeros of the zeta function on the lineRe(s) = 1.[16] It is also known that zeros do not exist in certain regions slightly to the left of the lineRe(s) = 1, known as zero-free regions. For instance, Korobov[17] and Vinogradov[18] independently showed via theVinogradov's mean-value theorem that for sufficiently large|t|,ζ(σ +it) ≠ 0 for

σ1c(log|t|)2/3+ε{\displaystyle \sigma \geq 1-{\frac {c}{(\log |t|)^{2/3+\varepsilon }}}}

for anyε > 0 and a numberc > 0 depending onε. Asymptotically, this is the largest known zero-free region for the zeta function.

Explicit zero-free regions are also known. Platt and Trudgian[19]verified computationally thatζ(σ +it) ≠ 0 ifσ ≠ 1/2 and|t| ≤ 3⋅1012. Mossinghoff, Trudgian and Yang proved[20] that zeta has no zeros in the region

σ115.558691log|t|{\displaystyle \sigma \geq 1-{\frac {1}{5.558691\log |t|}}}

for|t| ≥ 2, which is the largest known zero-free region in the critical strip for3⋅1012 < |t| < exp(64.1) ≈ 7⋅1027 (for previous results see[21]).Yang[22] showed thatζ(σ +it) ≠ 0 if

σ1loglog|t|21.233log|t|{\displaystyle \sigma \geq 1-{\frac {\log \log |t|}{21.233\log |t|}}} and|t|3{\displaystyle |t|\geq 3}

which is the largest known zero-free region forexp(170.2) < |t| < exp(4.8⋅105).Bellotti proved[23] (building on the work of Ford[24]) the zero-free region

σ1153.989(log|t|)2/3(loglog|t|)1/3{\displaystyle \sigma \geq 1-{\frac {1}{53.989(\log |t|)^{2/3}(\log \log |t|)^{1/3}}}} and|t|3{\displaystyle |t|\geq 3}.

This is the largest known zero-free region for fixed|t| ≥ exp(4.8⋅105). Bellotti also showed that for sufficiently large|t|, the following better result is known:ζ(σ +it) ≠ 0 for

σ1148.0718(log|t|)2/3(loglog|t|)1/3.{\displaystyle \sigma \geq 1-{\frac {1}{48.0718(\log |t|)^{2/3}(\log \log |t|)^{1/3}}}.}

The strongest result of this kind one can hope for is the truth of the Riemann hypothesis, which would have many profoundconsequences in the theory of numbers.

Other results

[edit]

It is known that there are infinitely many zeros on the critical line.Littlewood showed that if the sequence (γn) contains the imaginary parts of all zeros in theupper half-plane in ascending order, then

limn(γn+1γn)=0.{\displaystyle \lim _{n\rightarrow \infty }\left(\gamma _{n+1}-\gamma _{n}\right)=0.}

Thecritical line theorem asserts that a positive proportion of the nontrivial zeros lies on the critical line. (The Riemann hypothesis would imply that this proportion is1.)

In the critical strip, the zero with smallest non-negative imaginary part is1/2 + 14.13472514...i (OEISA058303). The fact that, for all complexs ≠ 1,

ζ(s)=ζ(s¯)¯{\displaystyle \zeta (s)={\overline {\zeta ({\overline {s}})}}}

implies that the zeros of the Riemann zeta function are symmetric about the real axis. Combining this symmetry with the functional equation, furthermore, one sees that the non-trivial zeros are symmetric about the critical lineRe(s) = 1/2.

It is also known that no zeros lie on the line with real part1.

A large class of modified zeta functions exists that share the same non-trivial zeros as the Riemann zeta function, where modification means replacing the prime numbers in the Euler product by real numbers, which was shown in aresult by Grosswald and Schnitzer.

Specific values

[edit]
Main article:Particular values of the Riemann zeta function

For any positive even integer2n,ζ(2n)=|B2n|(2π)2n2(2n)!,{\displaystyle \zeta (2n)={\frac {|{B_{2n}}|(2\pi )^{2n}}{2(2n)!}},}whereB2n is the(2n)thBernoulli number.For odd positive integers, no such simple expression is known, although these values are thought to be related to the algebraicK-theory of the integers; seeSpecial values ofL-functions.

For nonpositive integers, one hasζ(n)=Bn+1n+1{\displaystyle \zeta (-n)=-{\frac {B_{n+1}}{n+1}}}forn ≥ 0 (using the convention thatB1 = 1/2).In particular,ζ vanishes at the negative even integers becauseBm = 0 for all oddm other than 1. These are the so-called "trivial zeros" of the zeta function.

Viaanalytic continuation, one can show thatζ(1)=112{\displaystyle \zeta (-1)=-{\tfrac {1}{12}}}This gives a pretext for assigning a finite value to the divergent series1 + 2 + 3 + 4 + ⋯, which has been used in certain contexts (Ramanujan summation) such asstring theory.[25] Analogously, the particular valueζ(0)=12{\displaystyle \zeta (0)=-{\tfrac {1}{2}}}can be viewed as assigning a finite result to the divergent series1 + 1 + 1 + 1 + ⋯.

The valueζ(12)=1.46035450880958681288{\displaystyle \zeta {\bigl (}{\tfrac {1}{2}}{\bigr )}=-1.46035450880958681288\ldots }is employed in calculating kinetic boundary layer problems of linear kinetic equations.[26][27]

Althoughζ(1)=1+12+13+{\displaystyle \zeta (1)=1+{\tfrac {1}{2}}+{\tfrac {1}{3}}+\cdots }diverges, itsCauchy principal valuelimε0ζ(1+ε)+ζ(1ε)2{\displaystyle \lim _{\varepsilon \to 0}{\frac {\zeta (1+\varepsilon )+\zeta (1-\varepsilon )}{2}}}exists and is equal to theEuler–Mascheroni constantγ = 0.5772....[28]

The demonstration of the particular valueζ(2)=1+122+132+=π26{\displaystyle \zeta (2)=1+{\frac {1}{2^{2}}}+{\frac {1}{3^{2}}}+\cdots ={\frac {\pi ^{2}}{6}}}is known as theBasel problem. The reciprocal of this sum answers the question: 'What is the probability that two numbers selected from a uniform distribution from1 ton] arecoprime asn → ∞?'[29]The valueζ(3)=1+123+133+=1.202056903159594285399...{\displaystyle \zeta (3)=1+{\frac {1}{2^{3}}}+{\frac {1}{3^{3}}}+\cdots =1.202056903159594285399...}isApéry's constant.

Taking the limits → +∞ through the real numbers, one obtainsζ(+∞) = 1. But atcomplex infinity on theRiemann sphere the zeta function has anessential singularity.[2]

Various properties

[edit]

For sums involving the zeta function at integer andhalf-integer values, seerational zeta series.

Reciprocal

[edit]

The reciprocal of the zeta function may be expressed as aDirichlet series over theMöbius functionμ(n):

1ζ(s)=n=1μ(n)ns{\displaystyle {\frac {1}{\zeta (s)}}=\sum _{n=1}^{\infty }{\frac {\mu (n)}{n^{s}}}}

for every complex numbers with real part greater than1. There are a number of similar relations involving various well-knownmultiplicative functions; these are given in the article on theDirichlet series.

The Riemann hypothesis is equivalent to the claim that this expression is valid when the real part ofs is greater than1/2.

Universality

[edit]

The critical strip of the Riemann zeta function has the remarkable property ofuniversality. Thiszeta function universality states that there exists some location on the critical strip that approximates anyholomorphic function arbitrarily well. Since holomorphic functions are very general, this property is quite remarkable. The first proof of universality was provided bySergei Mikhailovitch Voronin in 1975.[30] More recent work has includedeffective versions of Voronin's theorem[31] andextending it toDirichletL-functions.[32][33]

Estimates of the maximum of the modulus of the zeta function

[edit]

Let the functionsF(T;H) andG(s0; Δ) be defined by the equalities

F(T;H)=max|tT|H|ζ(12+it)|,G(s0;Δ)=max|ss0|Δ|ζ(s)|.{\displaystyle F(T;H)=\max _{|t-T|\leq H}\left|\zeta \left({\tfrac {1}{2}}+it\right)\right|,\qquad G(s_{0};\Delta )=\max _{|s-s_{0}|\leq \Delta }|\zeta (s)|.}

HereT is a sufficiently large positive number,0 <H ≪ log logT,s0 =σ0 +iT,1/2 ≤σ0 ≤ 1,0 < Δ < 1/3. Estimating the valuesF andG from below shows, how large (in modulus) valuesζ(s) can take on short intervals of the critical line or in small neighborhoods of points lying in the critical strip0 ≤ Re(s) ≤ 1.

The caseH ≫ log logT was studied byKanakanahalli Ramachandra; the caseΔ >c, wherec is a sufficiently large constant, is trivial.

Anatolii Karatsuba proved,[34][35] in particular, that if the valuesH andΔ exceed certain sufficiently small constants, then the estimates

F(T;H)Tc1,G(s0;Δ)Tc2,{\displaystyle F(T;H)\geq T^{-c_{1}},\qquad G(s_{0};\Delta )\geq T^{-c_{2}},}

hold, wherec1 andc2 are certain absolute constants.

Argument of the Riemann zeta function

[edit]

The function

S(t)=1πargζ(12+it){\displaystyle S(t)={\frac {1}{\pi }}\arg {\zeta \left({\tfrac {1}{2}}+it\right)}}

is called theargument of the Riemann zeta function. Hereargζ(1/2 +it) is the increment of an arbitrary continuous branch ofargζ(s) along the broken line joining the points2,2 +it and1/2 +it.

There are some theorems on properties of the functionS(t). Among those results[36][37] are themean value theorems forS(t) and its first integral

S1(t)=0tS(u)du{\displaystyle S_{1}(t)=\int _{0}^{t}S(u)\,\mathrm {d} u}

on intervals of the real line, and also the theorem claiming that every interval(T,T +H] for

HT2782+ε{\displaystyle H\geq T^{{\frac {27}{82}}+\varepsilon }}

contains at least

HlnT3eclnlnT{\displaystyle H{\sqrt[{3}]{\ln T}}e^{-c{\sqrt {\ln \ln T}}}}

points where the functionS(t) changes sign. Earlier similar results were obtained byAtle Selberg for the case

HT12+ε.{\displaystyle H\geq T^{{\frac {1}{2}}+\varepsilon }.}

Representations

[edit]

Dirichlet series

[edit]

An extension of the area of convergence can be obtained by rearranging the original series.[38] The series

ζ(s)=1s1n=1(n(n+1)snsns){\displaystyle \zeta (s)={\frac {1}{s-1}}\sum _{n=1}^{\infty }\left({\frac {n}{(n+1)^{s}}}-{\frac {n-s}{n^{s}}}\right)}

converges forRe(s) > 0, while

ζ(s)=1s1n=1n(n+1)2(2n+3+s(n+1)s+22n1sns+2){\displaystyle \zeta (s)={\frac {1}{s-1}}\sum _{n=1}^{\infty }{\frac {n(n+1)}{2}}\left({\frac {2n+3+s}{(n+1)^{s+2}}}-{\frac {2n-1-s}{n^{s+2}}}\right)}

converge even forRe(s) > −1. In this way, the area of convergence can be extended toRe(s) > −k for any negative integerk.

The recurrence connection is clearly visible from the expression valid forRe(s) > −2 enabling further expansion by integration by parts.

ζ(s)=1+1s1s2![ζ(s+1)1]s(s+1)3![ζ(s+2)1]s(s+1)(s+2)3!n=101t3dt(n+t)s+3.{\displaystyle {\begin{aligned}\zeta (s)=&1+{\frac {1}{s-1}}-{\frac {s}{2!}}[\zeta (s+1)-1]\\-&{\frac {s(s+1)}{3!}}[\zeta (s+2)-1]\\&-{\frac {s(s+1)(s+2)}{3!}}\sum _{n=1}^{\infty }\int _{0}^{1}{\frac {t^{3}dt}{(n+t)^{s+3}}}.\end{aligned}}}

This recurrence leads to this other series development that uses therising factorial and is valid for the entire complex plane[38]

ζ(s)=ss1n=1(ζ(s+n)1)s(s+1)(s+n1)(n+1)!.{\displaystyle \zeta (s)={\frac {s}{s-1}}-\sum _{n=1}^{\infty }{\bigl (}\zeta (s+n)-1{\bigr )}{\frac {s(s+1)\cdots (s+n-1)}{(n+1)!}}.}

This can be used recursively to extend the Dirichlet series definition to all complex numbers.

The Riemann zeta function also appears in a form similar to the Mellin transform in an integral over theGauss–Kuzmin–Wirsing operator acting onxs−1; that context gives rise to a series expansion in terms of thefalling factorial.[39]

Mellin-type integrals

[edit]

TheMellin transform of a functionf(x) is defined as[40]

0f(x)xsdxx{\displaystyle \int _{0}^{\infty }f(x)x^{s}\,{\frac {\mathrm {d} x}{x}}}

in the region where the integral is defined. There are various expressions for the zeta function as Mellin transform-like integrals. If the real part ofs is greater than one, we have

Γ(s)ζ(s)=0xs1ex1dx{\displaystyle \Gamma (s)\zeta (s)=\int _{0}^{\infty }{\frac {x^{s-1}}{e^{x}-1}}\,\mathrm {d} x\quad } andΓ(s)ζ(s)=12s0xscosh(x)1dx,{\displaystyle \quad \Gamma (s)\zeta (s)={\frac {1}{2s}}\int _{0}^{\infty }{\frac {x^{s}}{\cosh(x)-1}}\,\mathrm {d} x,}

whereΓ denotes thegamma function. By modifying thecontour, Riemann showed that

2sin(πs)Γ(s)ζ(s)=iH(x)s1ex1dx{\displaystyle 2\sin(\pi s)\Gamma (s)\zeta (s)=i\oint _{H}{\frac {(-x)^{s-1}}{e^{x}-1}}\,\mathrm {d} x}

for alls[41] (whereH denotes theHankel contour).

We can also find expressions which relate to prime numbers and theprime number theorem. Ifπ(x) is theprime-counting function, then

lnζ(s)=s0π(x)x(xs1)dx,{\displaystyle \ln \zeta (s)=s\int _{0}^{\infty }{\frac {\pi (x)}{x(x^{s}-1)}}\,\mathrm {d} x,}

for values withRe(s) > 1.

A similar Mellin transform involves the Riemann functionJ(x), which counts prime powerspn with a weight of1/n, so that

J(x)=π(x1n)n.{\displaystyle J(x)=\sum {\frac {\pi \left(x^{\frac {1}{n}}\right)}{n}}.}

Now

lnζ(s)=s0J(x)xs1dx.{\displaystyle \ln \zeta (s)=s\int _{0}^{\infty }J(x)x^{-s-1}\,\mathrm {d} x.}

These expressions can be used to prove the prime number theorem by means of the inverse Mellin transform. Riemann'sprime-counting function is easier to work with, andπ(x) can be recovered from it byMöbius inversion.

Theta functions

[edit]

The Riemann zeta function can be given by a Mellin transform[42]

2πs2Γ(s2)ζ(s)=0(θ(it)1)ts21dt,{\displaystyle 2\pi ^{-{\frac {s}{2}}}\Gamma \left({\frac {s}{2}}\right)\zeta (s)=\int _{0}^{\infty }{\bigl (}\theta (it)-1{\bigr )}t^{{\frac {s}{2}}-1}\,\mathrm {d} t,}

in terms ofJacobi's theta function

θ(τ)=n=eπin2τ.{\displaystyle \theta (\tau )=\sum _{n=-\infty }^{\infty }e^{\pi in^{2}\tau }.}

However, this integral only converges if the real part ofs is greater than1, but it can be regularized. This gives the following expression for the zeta function, which is well defined for alls except0 and1:

πs2Γ(s2)ζ(s)=1s11s+1201(θ(it)t12)ts21dt+121(θ(it)1)ts21dt.{\displaystyle \pi ^{-{\frac {s}{2}}}\Gamma \left({\frac {s}{2}}\right)\zeta (s)={\frac {1}{s-1}}-{\frac {1}{s}}+{\frac {1}{2}}\int _{0}^{1}\left(\theta (it)-t^{-{\frac {1}{2}}}\right)t^{{\frac {s}{2}}-1}\,\mathrm {d} t+{\frac {1}{2}}\int _{1}^{\infty }{\bigl (}\theta (it)-1{\bigr )}t^{{\frac {s}{2}}-1}\,\mathrm {d} t.}

Laurent series

[edit]

The Riemann zeta function ismeromorphic with a singlepole of order one ats = 1. It can therefore be expanded as aLaurent series abouts = 1; the series development is then[43]

ζ(s)=1s1+n=0γnn!(1s)n.{\displaystyle \zeta (s)={\frac {1}{s-1}}+\sum _{n=0}^{\infty }{\frac {\gamma _{n}}{n!}}(1-s)^{n}.}

The constantsγn here are called theStieltjes constants and can be defined by thelimit

γn=limm((k=1m(lnk)nk)(lnm)n+1n+1).{\displaystyle \gamma _{n}=\lim _{m\rightarrow \infty }{\left(\left(\sum _{k=1}^{m}{\frac {(\ln k)^{n}}{k}}\right)-{\frac {(\ln m)^{n+1}}{n+1}}\right)}.}

The constant termγ0 is theEuler–Mascheroni constant.

Integral

[edit]

For allsC{\displaystyle \mathbb {C} },s ≠ 1, the integral relation (cf.Abel–Plana formula)

ζ(s)=1s1+12+20sin(sarctant)(1+t2)s/2(e2πt1)  dt{\displaystyle \zeta (s)={\frac {1}{s-1}}+{\frac {1}{2}}+2\int _{0}^{\infty }{\frac {\sin(s\arctan t)}{\left(1+t^{2}\right)^{s/2}\left(e^{2\pi t}-1\right)\ }}\ \operatorname {d} t}

holds true, which may be used for a numerical evaluation of the zeta function.

Hadamard product

[edit]

On the basis ofWeierstrass's factorization theorem,Hadamard gave theinfinite product expansion

ζ(s)=e(log(2π)1γ2)s2(s1)Γ(1+s2)ρ(1sρ)esρ,{\displaystyle \zeta (s)={\frac {e^{\left(\log(2\pi )-1-{\frac {\gamma }{2}}\right)s}}{2(s-1)\Gamma \left(1+{\frac {s}{2}}\right)}}\prod _{\rho }\left(1-{\frac {s}{\rho }}\right)e^{\frac {s}{\rho }},}

where the product is over the non-trivial zerosρ ofζ and the letterγ again denotes theEuler–Mascheroni constant. A simplerinfinite product expansion is

ζ(s)=πs2ρ(1sρ)2(s1)Γ(1+s2).{\displaystyle \zeta (s)=\pi ^{\frac {s}{2}}{\frac {\prod _{\rho }\left(1-{\frac {s}{\rho }}\right)}{2(s-1)\Gamma \left(1+{\frac {s}{2}}\right)}}.}

This form clearly displays the simple pole ats = 1, the trivial zeros at−2, −4,... due to the gamma function term in the denominator, and the non-trivial zeros ats =ρ. (To ensure convergence in the latter formula, the product should be taken over "matching pairs" of zeros, i.e. the factors for a pair of zeros of the formρ and1 −ρ should be combined.)

Globally convergent series

[edit]

A globally convergent series for the zeta function, valid for all complex numberss excepts = 1 +i/ln 2n for some integern, was conjectured byKonrad Knopp in 1926[44] and proven byHelmut Hasse in 1930[45] (cf.Euler summation):

ζ(s)=1121sn=012n+1k=0n(nk)(1)k(k+1)s.{\displaystyle \zeta (s)={\frac {1}{1-2^{1-s}}}\sum _{n=0}^{\infty }{\frac {1}{2^{n+1}}}\sum _{k=0}^{n}{\binom {n}{k}}{\frac {(-1)^{k}}{(k+1)^{s}}}.}

The series appeared in an appendix to Hasse's paper, and was published for the second time by Jonathan Sondow in 1994.[46]

Hasse also proved the globally converging series

ζ(s)=1s1n=01n+1k=0n(nk)(1)k(k+1)s1{\displaystyle \zeta (s)={\frac {1}{s-1}}\sum _{n=0}^{\infty }{\frac {1}{n+1}}\sum _{k=0}^{n}{\binom {n}{k}}{\frac {(-1)^{k}}{(k+1)^{s-1}}}}

in the same publication.[45] Research by Iaroslav Blagouchine[47][44]has found that a similar, equivalent series was published byJoseph Ser in 1926.[48]

In 1997 K. Maślanka gave another globally convergent (excepts = 1) series for the Riemann zeta function:

ζ(s)=1s1k=0(i=1k(is2))Akk!=1s1k=0(1s2)kAkk!{\displaystyle \zeta (s)={\frac {1}{s-1}}\sum _{k=0}^{\infty }{\biggl (}\prod _{i=1}^{k}(i-{\frac {s}{2}}){\biggl )}{\frac {A_{k}}{k!}}={\frac {1}{s-1}}\sum _{k=0}^{\infty }{\biggl (}1-{\frac {s}{2}}{\biggl )}_{k}{\frac {A_{k}}{k!}}}

where real coefficientsAk{\displaystyle A_{k}} are given by:

Ak=j=0k(1)j(kj)(2j+1)ζ(2j+2)=j=0k(kj)B2j+2π2j+2(2)j(12)j{\displaystyle A_{k}=\sum _{j=0}^{k}(-1)^{j}{\binom {k}{j}}(2j+1)\zeta (2j+2)=\sum _{j=0}^{k}{\binom {k}{j}}{\frac {B_{2j+2}\pi ^{2j+2}}{\left(2\right)_{j}\left({\frac {1}{2}}\right)_{j}}}}

HereBn are the Bernoulli numbers and(x)k denotes the Pochhammer symbol.[49][50]

Note that this representation of the zeta function is essentially an interpolation with nodes, where the nodes are pointss = 2, 4, 6, ..., i.e. exactly those where the zeta values are precisely known, as Euler showed. An elegant and very short proof of this representation of the zeta function, based onCarlson's theorem, was presented by Philippe Flajolet in 2006.[51]

The asymptotic behavior of the coefficientsAk{\displaystyle A_{k}} is rather curious: for growingk{\displaystyle k} values, we observe regular oscillations with a nearly exponentially decreasing amplitude and slowly decreasing frequency (roughly ask2/3{\displaystyle k^{-2/3}}). Using the saddle point method, we can show that

Ak4π3/23κexp(3κ2+π24κ)cos(4π333κ2+3π24κ){\displaystyle A_{k}\sim {\frac {4\pi ^{3/2}}{\sqrt {3\kappa }}}\exp {\biggl (}-{\frac {3\kappa }{2}}+{\frac {\pi ^{2}}{4\kappa }}{\biggl )}\cos {\biggl (}{\frac {4\pi }{3}}-{\frac {3{\sqrt {3}}\kappa }{2}}+{\frac {{\sqrt {3}}\pi ^{2}}{4\kappa }}{\biggl )}}

whereκ{\displaystyle \kappa } stands for:

κ:=π2k3{\displaystyle \kappa :={\sqrt[{3}]{\pi ^{2}k}}}

(see[52] for details).

On the basis of this representation, in 2003 Luis Báez-Duarte provided a new criterion for the Riemann hypothesis.[53][54][55] Namely, if we define the coefficientsck as

ck:=j=0k(1)j(kj)1ζ(2j+2){\displaystyle c_{k}:=\sum _{j=0}^{k}(-1)^{j}{\binom {k}{j}}{\frac {1}{\zeta (2j+2)}}}

then the Riemann hypothesis is equivalent to

ck=O(k3/4+ε)(ε>0){\displaystyle c_{k}={\mathcal {O}}\left(k^{-3/4+\varepsilon }\right)\qquad (\forall \varepsilon >0)}

Rapidly convergent series

[edit]

Peter Borwein developed an algorithm that appliesChebyshev polynomials to theDirichlet eta function to produce avery rapidly convergent series suitable for high precision numerical calculations.[56]

Series representation at positive integers via the primorial

[edit]
ζ(k)=2k2k1+r=2(pr1#)kJk(pr#)k=2,3,.{\displaystyle \zeta (k)={\frac {2^{k}}{2^{k}-1}}+\sum _{r=2}^{\infty }{\frac {(p_{r-1}\#)^{k}}{J_{k}(p_{r}\#)}}\qquad k=2,3,\ldots .}

Herepn# is theprimorial sequence andJk isJordan's totient function.[57]

Series representation by the incomplete poly-Bernoulli numbers

[edit]

The functionζ can be represented, forRe(s) > 1, by the infinite series

ζ(s)=n=0Bn,2(s)(Wk(1))nn!,{\displaystyle \zeta (s)=\sum _{n=0}^{\infty }B_{n,\geq 2}^{(s)}{\frac {(W_{k}(-1))^{n}}{n!}},}

wherek ∈ {−1, 0},Wk is thekth branch of theLambertW-function, andB(μ)
n,≥2
is an incomplete poly-Bernoulli number.[58]

Mellin transform of the Engel map

[edit]

The functiong(x) =x(1 +x−1) − 1 is iterated to find the coefficients appearing inEngel expansions.[59]

TheMellin transform of the mapg(x){\displaystyle g(x)} is related to the Riemann zeta function by the formula

01g(x)xs1dx=n=11n+11n(x(n+1)1)xs1dx=n=1ns(s1)+(n+1)s1(n2+2n+1)+ns1sn1s(s+1)s(n+1)=ζ(s+1)s+11s(s+1){\displaystyle {\begin{aligned}\int _{0}^{1}g(x)x^{s-1}\,dx&=\sum _{n=1}^{\infty }\int _{\frac {1}{n+1}}^{\frac {1}{n}}(x(n+1)-1)x^{s-1}\,dx\\[6pt]&=\sum _{n=1}^{\infty }{\frac {n^{-s}(s-1)+(n+1)^{-s-1}(n^{2}+2n+1)+n^{-s-1}s-n^{1-s}}{(s+1)s(n+1)}}\\[6pt]&={\frac {\zeta (s+1)}{s+1}}-{\frac {1}{s(s+1)}}\end{aligned}}}

Stochastic representations

[edit]

TheBrownian motion and Riemann zeta function are connected through themoment-generating functions ofstochastic processes derived from theBrownian motion.[60]

Numerical algorithms

[edit]

A classical algorithm, in use prior to about 1930, proceeds by applying theEuler–Maclaurin formula to obtain, for positive integersn andm,

ζ(s)=j=1n1js+12ns+n1ss1+k=1mTk,n(s)+Em,n(s){\displaystyle \zeta (s)=\sum _{j=1}^{n-1}j^{-s}+{\tfrac {1}{2}}n^{-s}+{\frac {n^{1-s}}{s-1}}+\sum _{k=1}^{m}T_{k,n}(s)+E_{m,n}(s)}

where, lettingB2k{\displaystyle B_{2k}} denote the indicatedBernoulli number,

Tk,n(s)=B2k(2k)!n1s2kj=02k2(s+j){\displaystyle T_{k,n}(s)={\frac {B_{2k}}{(2k)!}}n^{1-s-2k}\prod _{j=0}^{2k-2}(s+j)}

and the error satisfies

|Em,n(s)|<|s+2m+1σ+2m+1Tm+1,n(s)|,{\displaystyle |E_{m,n}(s)|<\left|{\frac {s+2m+1}{\sigma +2m+1}}T_{m+1,n}(s)\right|,}

withσ = Re(s).[61]

A modern numerical algorithm is theOdlyzko–Schönhage algorithm.

Applications

[edit]

The zeta function occurs in appliedstatistics includingZipf's law,Zipf–Mandelbrot law, andLotka's law.

Zeta function regularization is used as one possible means ofregularization ofdivergent series anddivergent integrals inquantum field theory. In one notable example, the Riemann zeta function shows up explicitly in one method of calculating theCasimir effect. The zeta function is also useful for the analysis ofdynamical systems.[62]

Musical tuning

[edit]

In the theory ofmusical tunings, the zeta function can be used to findequal divisions of the octave (EDOs) that closely approximate the intervals of theharmonic series. For increasing values oftR{\displaystyle t\in \mathbb {R} }, the value of

|ζ(12+2πiln(2)t)|{\displaystyle \left\vert \zeta \left({\frac {1}{2}}+{\frac {2\pi {i}}{\ln {(2)}}}t\right)\right\vert }

peaks near integers that correspond to such EDOs.[63] Examples include popular choices such as 12, 19, and 53.[64]

Infinite series

[edit]

The zeta function evaluated at equidistant positive integers appears in infinite series representations of a number of constants.[65]

In fact the even and odd terms give the two sums

and

Parametrized versions of the above sums are given by

and

with|t| < 2 and whereψ{\displaystyle \psi } andγ{\displaystyle \gamma } are thepolygamma function andEuler's constant, respectively, as well as

all of which are continuous att=1{\displaystyle t=1}. Other sums include

where{\displaystyle \Im } denotes theimaginary part of a complex number.

Another interesting series that relates to thenatural logarithm of thelemniscate constant is the following

There are yet more formulas in the articleHarmonic number.

Generalizations

[edit]

There are a number of relatedzeta functions that can be considered to be generalizations of the Riemann zeta function. These include theHurwitz zeta function

ζ(s,q)=k=01(k+q)s{\displaystyle \zeta (s,q)=\sum _{k=0}^{\infty }{\frac {1}{(k+q)^{s}}}}

(the convergent series representation was given byHelmut Hasse in 1930,[45] cf.Hurwitz zeta function), which coincides with the Riemann zeta function whenq = 1 (the lower limit of summation in the Hurwitz zeta function is0, not1), theDirichletL-functions and theDedekind zeta function. For other related functions see the articleszeta function andL-function.

Thepolylogarithm is given by

Lis(z)=k=1zkks{\displaystyle \operatorname {Li} _{s}(z)=\sum _{k=1}^{\infty }{\frac {z^{k}}{k^{s}}}}

which coincides with the Riemann zeta function whenz = 1.TheClausen functionCls(θ) can be chosen as the real or imaginary part ofLis(e).

TheLerch transcendent is given by

Φ(z,s,q)=k=0zk(k+q)s{\displaystyle \Phi (z,s,q)=\sum _{k=0}^{\infty }{\frac {z^{k}}{(k+q)^{s}}}}

which coincides with the Riemann zeta function whenz = 1 andq = 1 (the lower limit of summation in the Lerch transcendent is 0, not 1).

Themultiple zeta functions are defined by

ζ(s1,s2,,sn)=k1>k2>>kn>0k1s1k2s2knsn.{\displaystyle \zeta (s_{1},s_{2},\ldots ,s_{n})=\sum _{k_{1}>k_{2}>\cdots >k_{n}>0}{k_{1}}^{-s_{1}}{k_{2}}^{-s_{2}}\cdots {k_{n}}^{-s_{n}}.}

One can analytically continue these functions to then-dimensional complex space. The special values taken by these functions at positive integer arguments are calledmultiple zeta values by number theorists and have been connected to many different branches in mathematics and physics.

See also

[edit]

References

[edit]
  1. ^"Jupyter Notebook Viewer".Nbviewer.ipython.org. Retrieved4 January 2017.
  2. ^abSteuding, Jörn; Suriajaya, Ade Irma (1 November 2020)."Value-Distribution of the Riemann Zeta-Function Along Its Julia Lines".Computational Methods and Function Theory.20 (3):389–401.arXiv:2007.14661.doi:10.1007/s40315-020-00316-x.hdl:2324/4483207.ISSN 2195-3724.S2CID 216323223.Theorem 2 implies thatζ has an essential singularity at infinity
  3. ^Bombieri, Enrico."The Riemann Hypothesis – official problem description"(PDF).Clay Mathematics Institute. Archived fromthe original(PDF) on 22 December 2015. Retrieved8 August 2014.
  4. ^Devlin, Keith (2002).The Millennium Problems: The seven greatest unsolved mathematical puzzles of our time. New York: Barnes & Noble. pp. 43–47.ISBN 978-0-7607-8659-8.
  5. ^Sandifer, Charles Edward (2007).How Euler Did It. Mathematical Association of America. p. 193.ISBN 978-0-88385-563-8.
  6. ^Mollin, Richard A. (2010).Advanced Number Theory with Applications. Discrete Mathematics and its Applications (Boca Raton). CRC Press, Boca Raton, FL. p. 220.ISBN 978-1-4200-8328-6.MR 2560324.
  7. ^Damm-Johnsenn, Håvard (2019).Theta functions and their applications(PDF). p. 5. Archived fromthe original(PDF) on 21 March 2025.
  8. ^Titchmarsh, E.C. (1986).The Theory of the Riemann Zeta Function (2nd ed.).Oxford, UK: Oxford Science Publications. pp. 21–22.ISBN 0-19-853369-1.
  9. ^Conrey, J. B. (1989)."More than two fifths of the zeros of the Riemann zeta function are on the critical line".J. Reine Angew. Math.1989 (399):1–26.doi:10.1515/crll.1989.399.1.MR 1004130.S2CID 115910600.
  10. ^Pratt, Kyle; Robles, Nicolas; Zaharescu, Alexandru; Zeindler, Dirk (2020)."More than five-twelfths of the zeros ofζ{\displaystyle \zeta } are on the critical line".Research in the Mathematical Sciences.7.arXiv:1802.10521.doi:10.1007/s40687-019-0199-8.
  11. ^Eric Weisstein."Riemann Zeta Function Zeros". Retrieved24 April 2021.
  12. ^The L-functions and Modular Forms Database."Zeros of ζ(s)".
  13. ^Trudgian, Timothy S. (2014). "An improved upper bound for the argument of the Riemann zeta function on the critical line II".J. Number Theory.134:280–292.arXiv:1208.5846.doi:10.1016/j.jnt.2013.07.017.
  14. ^Hardy, G.H. (1914). "Sur les zeros de la fonction ζ(s)".Comptes rendus de l'Académie des Sciences.158.French Academy of Sciences:1012–1014.
  15. ^Hardy, G. H.; Fekete, M.; Littlewood, J. E. (1 September 1921)."The Zeros of Riemann's Zeta-Function on the Critical Line".Journal of the London Mathematical Society.s1-1:15–19.doi:10.1112/jlms/s1-1.1.15.
  16. ^Diamond, Harold G. (1982)."Elementary methods in the study of the distribution of prime numbers".Bulletin of the American Mathematical Society.7 (3):553–589.doi:10.1090/S0273-0979-1982-15057-1.MR 0670132.
  17. ^Korobov, Nikolai Mikhailovich (1958). "Estimates of trigonometric sums and their applications".Usp. Mat. Nauk.13 (4):185–192.
  18. ^Vinogradov, I.M. (1958). "Eine neue Abschätzung der Funktionζ(1 +it)".Russian. Izv. Akad. Nauk SSSR, Ser. Mat.22:161–164.
  19. ^Platt, David; Trudgian, Timothy S. (2021). "The Riemann hypothesis is true up to 3⋅1012".Bulletin of the London Mathematical Society.53 (3):792–797.arXiv:2004.09765.doi:10.1112/blms.12460.
  20. ^Mossinghoff, Michael J.; Trudgian, Timothy S.; Yang, Andrew (2024). "Explicit zero-free regions for the Riemann zeta-function".Res. Number Theory.10 11.arXiv:2212.06867.doi:10.1007/s40993-023-00498-y.
  21. ^Mossinghoff, Michael J.; Trudgian, Timothy S. (2015). "Nonnegative trigonometric polynomials and a zero-free region for the Riemann zeta-function".J. Number Theory.157:329–349.arXiv:1410.3926.doi:10.1016/J.JNT.2015.05.010.S2CID 117968965.
  22. ^Yang, Andrew (2024). "Explicit bounds onζ(s){\displaystyle \zeta (s)} in the critical strip and a zero-free region".J. Math. Anal. Appl.534 (2) 128124.arXiv:2301.03165.doi:10.1016/j.jmaa.2024.128124.
  23. ^Bellotti, Chiara (2024). "Explicit bounds for the Riemann zeta function and a new zero-free region".J. Math. Anal. Appl.536 (2) 128249.arXiv:2306.10680.doi:10.1016/j.jmaa.2024.128249.
  24. ^Ford, K. (2002). "Vinogradov's integral and bounds for the Riemann zeta function".Proc. London Math. Soc.85 (3):565–633.arXiv:1910.08209.doi:10.1112/S0024611502013655.S2CID 121144007.
  25. ^Polchinski, Joseph (1998).An Introduction to the Bosonic String. String Theory. Vol. I. Cambridge University Press. p. 22.ISBN 978-0-521-63303-1.
  26. ^Kainz, A. J.; Titulaer, U. M. (1992). "An accurate two-stream moment method for kinetic boundary layer problems of linear kinetic equations".J. Phys. A: Math. Gen.25 (7):1855–1874.Bibcode:1992JPhA...25.1855K.doi:10.1088/0305-4470/25/7/026.
  27. ^Further digits and references for this constant are available atOEISA059750.
  28. ^Sondow, Jonathan (1998)."An antisymmetric formula for Euler's constant".Mathematics Magazine.71 (3):219–220.doi:10.1080/0025570X.1998.11996638. Archived fromthe original on 4 June 2011. Retrieved29 May 2006.
  29. ^Ogilvy, C. S.; Anderson, J. T. (1988).Excursions in Number Theory. Dover Publications. pp. 29–35.ISBN 0-486-25778-9.
  30. ^Voronin, S. M. (1975). "Theorem on the Universality of the Riemann Zeta Function".Izv. Akad. Nauk SSSR, Ser. Matem.39:475–486. Reprinted inMath. USSR Izv. (1975)9: 443–445.
  31. ^Ramūnas Garunkštis; Antanas Laurinčikas; Kohji Matsumoto; Jörn Steuding; Rasa Steuding (2010)."Effective uniform approximation by the Riemann zeta-function".Publicacions Matemàtiques.54 (1):209–219.doi:10.5565/PUBLMAT_54110_12.JSTOR 43736941.
  32. ^Bhaskar Bagchi (1982). "A Joint Universality Theorem for Dirichlet L-Functions".Mathematische Zeitschrift.181 (3):319–334.doi:10.1007/bf01161980.ISSN 0025-5874.S2CID 120930513.
  33. ^Steuding, Jörn (2007).Value-Distribution of L-Functions. Lecture Notes in Mathematics. Vol. 1877. Berlin: Springer. p. 19.arXiv:1711.06671.doi:10.1007/978-3-540-44822-8.ISBN 978-3-540-26526-9.
  34. ^Karatsuba, A. A. (2001). "Lower bounds for the maximum modulus ofζ(s) in small domains of the critical strip".Mat. Zametki.70 (5):796–798.
  35. ^Karatsuba, A. A. (2004). "Lower bounds for the maximum modulus of the Riemann zeta function on short segments of the critical line".Izv. Ross. Akad. Nauk, Ser. Mat.68 (8):99–104.Bibcode:2004IzMat..68.1157K.doi:10.1070/IM2004v068n06ABEH000513.S2CID 250796539.
  36. ^Karatsuba, A. A. (1996). "Density theorem and the behavior of the argument of the Riemann zeta function".Mat. Zametki (60):448–449.
  37. ^Karatsuba, A. A. (1996). "On the functionS(t)".Izv. Ross. Akad. Nauk, Ser. Mat.60 (5):27–56.
  38. ^abKnopp, Konrad (1947).Theory of Functions, Part Two. New York, Dover publications. pp. 51–55.
  39. ^"A series representation for the Riemann Zeta derived from the Gauss-Kuzmin-Wirsing Operator"(PDF).Linas.org. Retrieved4 January 2017.
  40. ^Riemann, Bernhard (1859). "On the number of primes less than a given magnitude".Monatsberichte der Königlich Preußischen Akademie der Wissenschaften zu Berlin. translated and reprinted inEdwards, H. M. (1974).Riemann's Zeta Function. New York: Academic Press.ISBN 0-12-232750-0.Zbl 0315.10035.
  41. ^Trivial exceptions of values ofs that cause removable singularities are not taken into account throughout this article.
  42. ^Neukirch, Jürgen (1999).Algebraic number theory. Springer. p. 422.ISBN 3-540-65399-6.
  43. ^Hashimoto, Yasufumi; Iijima, Yasuyuki; Kurokawa, Nobushige; Wakayama, Masato (2004)."Euler's constants for the Selberg and the Dedekind zeta functions".Bulletin of the Belgian Mathematical Society, Simon Stevin.11 (4):493–516.doi:10.36045/bbms/1102689119.MR 2115723.
  44. ^abBlagouchine, Iaroslav V. (2018)."Three Notes on Ser's and Hasse's Representations for the Zeta-functions".INTEGERS: The Electronic Journal of Combinatorial Number Theory.18A:1–45.arXiv:1606.02044.Bibcode:2016arXiv160602044B.doi:10.5281/zenodo.10581385.
  45. ^abcHasse, Helmut (1930). "Ein Summierungsverfahren für die Riemannscheζ-Reihe" [A summation method for the Riemannζ series].Mathematische Zeitschrift (in German).32 (1):458–464.doi:10.1007/BF01194645.S2CID 120392534.
  46. ^Sondow, Jonathan (1994)."Analytic continuation of Riemann's zeta function and values at negative integers via Euler's transformation of series"(PDF).Proceedings of the American Mathematical Society.120 (2):421–424.doi:10.1090/S0002-9939-1994-1172954-7.
  47. ^Blagouchine, Iaroslav V. (2016). "Expansions of generalized Euler's constants into the series of polynomials inπ−2 and into the formal enveloping series with rational coefficients only".Journal of Number Theory.158:365–396.arXiv:1501.00740.doi:10.1016/j.jnt.2015.06.012.
  48. ^Ser, Joseph (1926). "Sur une expression de la fonctionζ(s) de Riemann" [Upon an expression for Riemann'sζ function].Comptes rendus hebdomadaires des séances de l'Académie des Sciences (in French).182:1075–1077.
  49. ^Maślanka, Krzysztof (1997). "The Beauty of Nothingness".Acta Cosmologica.XXIII–I:13–17.
  50. ^Báez-Duarte, Luis (2010)."On Maslanka's Representation for the Riemann Zeta Function".International Journal of Mathematics and Mathematical Sciences.2010:1–9.arXiv:math/0307214.doi:10.1155/2010/714147.
  51. ^Flajolet, Philippe; Vepstas, Linas (2008). "On Differences of Zeta Values".Journal of Computational and Applied Mathematics.220 (1–2 October):58–73.arXiv:math/0611332.Bibcode:2008JCoAM.220...58F.doi:10.1016/j.cam.2007.07.040.
  52. ^Maślanka, Krzysztof; Koleżyński, Andrzej (2022). "The High Precision Numerical Calculation of Stieltjes Constants. Simple and Fast Algorithm".Computational Methods in Science and Technology.28 (2):47–59.arXiv:2210.04609.doi:10.12921/cmst.2022.0000014.S2CID 252780397.
  53. ^Báez-Duarte, Luis (2003). "A New Necessary and Sufficient Condition for the Riemann Hypothesis".Number Theory.arXiv:math/0307215.Bibcode:2003math......7215B.
  54. ^Maślanka, Krzysztof (2006). "Báez-Duarte's Criterion for the Riemann Hypothesis and Rice's Integrals".Number Theory.arXiv:math/0603713v2.Bibcode:2006math......3713M.
  55. ^Wolf, Marek (2014)."Some remarks on the Báez-Duarte criterion for the Riemann Hypothesis".Computational Methods in Science and Technology.20 (2):39–47.doi:10.12921/cmst.2014.20.02.39-47.
  56. ^Borwein, Peter (2000)."An Efficient Algorithm for the Riemann Zeta Function"(PDF). In Théra, Michel A. (ed.).Constructive, Experimental, and Nonlinear Analysis. Conference Proceedings, Canadian Mathematical Society. Vol. 27. Providence, RI:American Mathematical Society, on behalf of theCanadian Mathematical Society. pp. 29–34.ISBN 978-0-8218-2167-1. Archived fromthe original(PDF) on 26 July 2011. Retrieved25 November 2017.
  57. ^Mező, István (2013). "The primorial and the Riemann zeta function".The American Mathematical Monthly.120 (4): 321.
  58. ^Komatsu, Takao; Mező, István (2016). "Incomplete poly-Bernoulli numbers associated with incomplete Stirling numbers".Publicationes Mathematicae Debrecen.88 (3–4):357–368.arXiv:1510.05799.doi:10.5486/pmd.2016.7361.S2CID 55741906.
  59. ^"A220335 – OEIS".oeis.org. Retrieved17 April 2019.
  60. ^Biane, Philippe; Pitman, Jim; Yor, Marc (2001)."Probability laws related to the Jacobi theta and Riemann zeta functions, and Brownian excursions".Bulletin of the American Mathematical Society. New Series.38 (4). American Mathematical Society:435–465.doi:10.1090/S0273-0979-01-00912-0. Retrieved27 July 2025.
  61. ^Odlyzko, A. M.;Schönhage, A. (1988)."Fast algorithms for multiple evaluations of the Riemann zeta function".Trans. Amer. Math. Soc.309 (2):797–809.doi:10.2307/2000939.JSTOR 2000939.MR 0961614.
  62. ^"Work on spin-chains by A. Knauf, et. al".Empslocal.ex.ac.uk. Retrieved4 January 2017.
  63. ^Gene Ward Smith."Nearest integer to locations of increasingly large peaks of abs(zeta(0.5 + i×2×Pi/log(2)×t)) for increasing real t".The On-Line Encyclopedia of Integer Sequences. Retrieved4 March 2022.
  64. ^William A. Sethares (2005).Tuning, Timbre, Spectrum, Scale (2nd ed.). Springer-Verlag London. p. 74.... there are many different ways to evaluate the goodness, reasonableness, fitness, or quality of a scale ... Under some measures, 12-tet is the winner, under others 19-tet appears best, 53-tet often appears among the victors ...
  65. ^Most of the formulas in this section are from § 4 of J. M. Borwein et al. (2000)

Sources

[edit]

External links

[edit]

Analytic examples
Algebraic examples
Theorems
Analytic conjectures
Algebraic conjectures
p-adicL-functions
Integer sequences
Basic
Advanced(list)
Fibonacci spiral with square sizes up to 34.
Properties of sequences
Properties of series
Series
Convergence
Explicit series
Convergent
Divergent
Kinds of series
Hypergeometric series
International
National
Other
Retrieved from "https://en.wikipedia.org/w/index.php?title=Riemann_zeta_function&oldid=1337515525"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp