This plot of Riemann's zeta () function (here with argument) shows trivial zeros where, a pole whereζ(z) →, thecritical line of nontrivial zeros withRe(z) = 1/2 and density of absolute values.
The Riemann zeta function is afunction whoseargument may be any complex number other than 1, and whose values are also complex. It has zeros at the negative even integers; that is, when is one of These are called itstrivial zeros. The zeta function is also zero for other values of, which are callednontrivial zeros. The Riemann hypothesis is concerned with the locations of these nontrivial zeros, and states that:
The real part of every nontrivial zero of the Riemann zeta function is.
Thus, if the hypothesis is correct, all the nontrivial zeros lie on thecritical line consisting of the complex numbers where is areal number and is theimaginary unit.
Leonhard Euler considered this series in the 1730s for real values of, in conjunction with his solution to theBasel problem. He also proved that it equals theEuler product
The Riemann hypothesis discusses zeros outside theregion of convergence of this series and Euler product. To make sense of the hypothesis, it is necessary toanalytically continue the function to obtain a form that is valid for all complex. Because the zeta function ismeromorphic, all choices of how to perform this analytic continuation will lead to the same result, by theidentity theorem. A first step in this continuation observes that the series for the zeta function and theDirichlet eta function satisfy the relation
within the region of convergence for both series. But the eta function series on the right converges not just when the real part of is greater than one, but more generally whenever has positive real part. Thus, the zeta function can be redefined as, extending it from to the larger domain, except for the points where is zero. These are the points, where can be any nonzero integer; the zeta function can be extended to these values too by taking limits (see the article on theDirichlet eta function), giving a finite value for all values of with positive real part except thesimple pole at.
In the strip this extension of the zeta function satisfies thefunctional equation
One may then define for all remaining nonzero complex numbers ( and) by applying this equation outside the strip, and letting equal the right side of the equation whenever has non-positive real part (and).
If is a negative even integer, then, because the factor vanishes; these are the zeta function'strivial zeros. (If is a positive even integer this argument does not apply because the zeros of thesine function are canceled by the poles of thegamma function as it takes negative integer arguments.)
The valueζ(0) = −1/2 is not determined by the functional equation, but is the limiting value of as approaches zero. The functional equation also implies that the zeta function has no zeros with negative real part other than the trivial zeros, so all nontrivial zeros lie in thecritical strip where has real part between 0 and 1.
Riemann zeta function along the critical line withRe(s) = 1/2. Real values are shown on the horizontal axis and imaginary values are on the vertical axis.Re(ζ(1/2 +it)),Im(ζ(1/2 +it)) is plotted witht ranging between −30 and 30.[3]
3D animation showing critical strip (blue, where has real part between 0 and 1), critical line (red, for real part of equals 0.5) and zeroes (cross between red and orange): [x,y,z] = [Re(ζ(r +it)), Im(ζ(r +it)),t] with and.
The real part (red) and imaginary part (blue) of the Riemann zeta function along the critical line in thecomplex plane with real part. The firstnontrivial zeros, where equals zero, occur where both curves touch the horizontal-axis, for complex numbers with imaginary parts equaling, and.
... es ist sehr wahrscheinlich, dass alle Wurzeln reell sind. Hiervon wäre allerdings ein strenger Beweis zu wünschen; ich habe indess die Aufsuchung desselben nach einigen flüchtigen vergeblichen Versuchen vorläufig bei Seite gelassen, da er für den nächsten Zweck meiner Untersuchung entbehrlich schien.
... it is very probable that all roots are real. Of course one would wish for a rigorous proof here; I have for the time being, after some fleeting vain attempts, provisionally put aside the search for this, as it appears dispensable for the immediate objective of my investigation.
— Riemann's statement of the Riemann hypothesis, from (Riemann 1859). (He was discussing a variant of the zeta function, modified in a way that the real line be mapped to the critical line.)
At the death of Riemann, a note was found among his papers, saying "These properties ofζ(s) (the function in question) are deduced from an expression of it which, however, I did not succeed in simplifying enough to publish it."We still have not the slightest idea of what the expression could be. As to the properties he simply enunciated, some thirty years elapsed before I was able to prove all of them but one [the Riemann Hypothesis itself].
— Jacques Hadamard, The Mathematician's Mind, VIII. Paradoxical Cases of Intuition
which counts the primes and prime powers up to, counting a prime power as. The number of primes can be recovered from this function by using theMöbius inversion formula:
where the sum is over the nontrivial zeros of the zeta function and where is a slightly modified version of that replaces its value at its points ofdiscontinuity by the average of its upper and lower limits:
The summation in Riemann's formula is not absolutely convergent, but may be evaluated by taking the zeros in order of the absolute value of their imaginary part. The function occurring in the first term is the (unoffset)logarithmic integral function given by theCauchy principal value of the divergent integral
The terms involving the zeros of the zeta function need some care in their definition as has branch points at 0 and 1, and are defined (for) by analytic continuation in the complex variable in the region; i.e., they should be considered asEi(ρ logx). The other terms also correspond to zeros: the dominant term comes from the pole at, considered as a zero of multiplicity, and the remaining small terms come from the trivial zeros. For some graphs of the sums of the first few terms of this series seeRiesel & Göhl (1970) orZagier (1977).
This formula says that the zeros of the Riemann zeta function control theoscillations of primes around their "expected" positions. Riemann knew that the non-trivial zeros of the zeta function were symmetrically distributed about the line, and he knew that all of its non-trivial zeros must lie in the range. He checked that a few of the zeros lay on the critical line with real part and suggested that they all do; this is the Riemann hypothesis.
The result has caught the imagination of most mathematicians because it is so unexpected, connecting two seemingly unrelated areas in mathematics; namely,number theory, which is the study of the discrete, andcomplex analysis, which deals with continuous processes.
The practical uses of the Riemann hypothesis include many propositions known to be true under the Riemann hypothesis, and some that can be shown to be equivalent to the Riemann hypothesis.
Corrections to anestimate of the prime-counting function using zeros of the zeta function. The magnitude of the correction term is determined by the real part of the zero being added in the correction.
Helge von Koch proved that the Riemann hypothesis implies the "best possible" bound for the error of the prime number theorem.[6] A precise version of von Koch's result, due toSchoenfeld (1976), says that the Riemann hypothesis implies
for all.Schoenfeld (1976) also showed that the Riemann hypothesis implies
The Riemann hypothesis implies strong bounds on the growth of many otherarithmetic functions, in addition to the primes counting function above.
One example involves theMöbius functionμ. The statement that the equation
is valid for everys with real part greater than 1/2, with the sum on the right hand side converging, is equivalent to the Riemann hypothesis. From this we can also conclude that if theMertens function is defined by
The Riemann hypothesis is equivalent to many other conjectures about the rate of growth of other arithmetic functions aside fromμ(n). A typical example isRobin's theorem,[12] which states that ifσ(n) is thesigma function, given by
then
for alln > 5040 if and only if the Riemann hypothesis is true, whereγ is theEuler–Mascheroni constant.
A related bound was given byJeffrey Lagarias in 2002, who proved that the Riemann hypothesis is equivalent to the statement that:
Another example was found byJérôme Franel, and extended byLandau (seeFranel & Landau (1924)). The Riemann hypothesis is equivalent to several statements showing that the terms of theFarey sequence are fairly regular. One such equivalence is as follows: ifFn is the Farey sequence of ordern, beginning with 1/n and up to 1/1, then the claim that for allε > 0
is equivalent to the Riemann hypothesis. Here
is the number of terms in the Farey sequence of ordern.
The Riemann hypothesis has various weaker consequences as well; one is theLindelöf hypothesis on the rate of growth of the zeta function on the critical line, which says that, for anyε > 0,
ast →.
The Riemann hypothesis also implies quite sharp bounds for the growth rate of the zeta function in other regions of the critical strip. For example, it implies that
so the growth rate ofζ(1 +it) and its inverse would be known up to a factor of 2.[15]
The prime number theorem implies that on average, thegap between the primep and its successor islogp. However, some gaps between primes may be much larger than the average. Cramér proved that, assuming the Riemann hypothesis, every gap isO(√p logp). This is a case in which even the best bound that can be proved using the Riemann hypothesis is far weaker than what seems true:Cramér's conjecture implies that every gap isO((logp)2), which, while larger than the average gap, is far smaller than the bound implied by the Riemann hypothesis. Numerical evidence supports Cramér's conjecture.[16]
Analytic criteria equivalent to the Riemann hypothesis
Many statements equivalent to the Riemann hypothesis have been found, though so far none of them have led to much progress in proving (or disproving) it. Some typical examples are as follows. (Others involve thedivisor functionσ(n).)
holds for all ε > 0 if and only if the Riemann hypothesis holds. See also theHardy–Littlewood criterion.
Nyman (1950) proved that the Riemann hypothesis is true if and only if the space of functions of the form
whereρ(z) is the fractional part ofz,0 ≤θν ≤ 1, and
is dense in theHilbert spaceL2(0,1) of square-integrable functions on the unit interval.Beurling (1955) extended this by showing that the zeta function has no zeros with real part greater than 1/p if and only if this function space is dense inLp(0,1). This Nyman-Beurling criterion was strengthened by Baez-Duarte[17] to the case where.
Salem (1953) showed that the Riemann hypothesis is true if and only if the integral equation
has no non-trivial bounded solutions for.
Weil's criterion is the statement that the positivity of a certain function is equivalent to the Riemann hypothesis. Related isLi's criterion, a statement that the positivity of a certain sequence of numbers is equivalent to the Riemann hypothesis.
Speiser (1934) proved that the Riemann hypothesis is equivalent to the statement thatζ′(s), the derivative ofζ(s), has no zeros in the strip
Thatζ(s) has only simple zeros on the critical line is equivalent to its derivative having no zeros on the critical line.
that is parametrised by a real parameterλ, has a complex variablez and is defined using a super-exponentially decaying function
.
has only real zeros if and only ifλ ≥ Λ.Since the Riemann hypothesis is equivalent to the claim that all the zeroes ofH(0,z) are real, the Riemann hypothesis is equivalent to the conjecture thatΛ ≤ 0. Brad Rodgers andTerence Tao discovered the equivalence is actuallyΛ = 0 by proving zero to be the lower bound of the constant.[18] Proving zero is also the upper bound would therefore prove the Riemann hypothesis. As of April 2020 the upper bound isΛ ≤ 0.2.[19]
Consequences of the generalized Riemann hypothesis
Several applications use thegeneralized Riemann hypothesis forDirichlet L-series orzeta functions of number fields rather than just the Riemann hypothesis. Many basic properties of the Riemann zeta function can easily be generalized to all Dirichlet L-series, so it is plausible that a method that proves the Riemann hypothesis for the Riemann zeta function would also work for the generalized Riemann hypothesis for Dirichlet L-functions. Several results first proved using the generalized Riemann hypothesis were later given unconditional proofs without using it, though these were usually much harder. Many of the consequences on the following list are taken fromConrad (2010).
In 1913,Grönwall showed that the generalized Riemann hypothesis implies that Gauss'slist of imaginary quadratic fields with class number 1 is complete, though Baker, Stark and Heegner later gave unconditional proofs of this without using the generalized Riemann hypothesis.
In 1917, Hardy and Littlewood showed that the generalized Riemann hypothesis implies a conjecture of Chebyshev that which says that primes 3 mod 4 are more common than primes 1 mod 4 in some sense. (For related results, seePrime number theorem § Prime number race.)
In 1923, Hardy and Littlewood showed that the generalized Riemann hypothesis implies a weak form of theGoldbach conjecture for odd numbers: that every sufficiently large odd number is the sum of three primes, though in 1937 Vinogradov gave an unconditional proof. In 1997Deshouillers, Effinger,te Riele, and Zinoviev showed that the generalized Riemann hypothesis implies that every odd number greater than 5 is the sum of three primes. In 2013Harald Helfgott proved the ternary Goldbach conjecture without the GRH dependence, subject to some extensive calculations completed with the help of David J. Platt.
In 1934, Chowla showed that the generalized Riemann hypothesis implies that the first prime in the arithmetic progressiona modm is at mostKm2log(m)2 for some fixed constantK.
In 1973, Weinberger showed that the generalized Riemann hypothesis implies that Euler's list ofidoneal numbers is complete.
Weinberger (1973) showed that the generalized Riemann hypothesis for the zeta functions of all algebraic number fields implies that any number field with class number 1 is eitherEuclidean or an imaginary quadratic number field ofdiscriminant −19, −43, −67, or −163.
In 1976, G. Miller showed that the generalized Riemann hypothesis implies that one cantest if a number is prime in polynomial time via theMiller test. In 2002, Manindra Agrawal, Neeraj Kayal and Nitin Saxena proved this result unconditionally using theAKS primality test.
Odlyzko (1990) discussed how the generalized Riemann hypothesis can be used to give sharper estimates for discriminants and class numbers of number fields.
The method of proof here is truly amazing. If the generalized Riemann hypothesis is true, then the theorem is true. If the generalized Riemann hypothesis is false, then the theorem is true. Thus, the theorem is true!!
Care should be taken to understand what is meant by saying the generalized Riemann hypothesis is false: one should specify exactly which class of Dirichlet series has a counterexample.
This concerns the sign of the error in theprime number theorem.It has been computed thatπ(x) < li(x) for allx ≤ 1025 (see thistable), and no value ofx is known for whichπ(x) > li(x).
In 1914, Littlewood proved that there are arbitrarily large values ofx for which
and that there are also arbitrarily large values ofx for which
Thus the differenceπ(x) − li(x) changes sign infinitely many times.Skewes' number is an estimate of the value ofx corresponding to the first sign change.
Littlewood's proof is divided into two cases: the RH is assumed false (about half a page ofIngham 1932, Chapt. V), and the RH is assumed true (about a dozen pages). Stanisław Knapowski (1962) followed this up with a paper on the number of times changes sign in the interval.
This is theconjecture (first stated in article 303 of Gauss'sDisquisitiones Arithmeticae) that there are only finitely many imaginary quadratic fields with a given class number. One way to prove it would be to show that as the discriminantD → −∞ the class numberh(D) → ∞.
The following sequence of theorems involving the Riemann hypothesis is described inIreland & Rosen 1990, pp. 358–361:
Theorem (Hecke; 1918)—LetD < 0 be the discriminant of an imaginaryquadraticnumber fieldK. Assume the generalized Riemann hypothesis forL-functions of all imaginary quadratic Dirichlet characters. Then there is an absolute constantC such that
Theorem (Deuring; 1933)—If the RH is false thenh(D) > 1 if|D| is sufficiently large.
Theorem (Mordell; 1934)—If the RH is false thenh(D) → ∞ asD → −∞.
Theorem (Heilbronn; 1934)—If the generalized RH is false for theL-function of some imaginary quadratic Dirichlet character thenh(D) → ∞ asD → −∞.
(In the work of Hecke and Heilbronn, the onlyL-functions that occur are those attached to imaginary quadratic characters, and it is only for thoseL-functions thatGRH is true orGRH is false is intended; a failure of GRH for theL-function of a cubic Dirichlet character would, strictly speaking, mean GRH is false, but that was not the kind of failure of GRH that Heilbronn had in mind, so his assumption was more restricted than simplyGRH is false.)
In 1935,Carl Siegel strengthened the result without using RH or GRH in any way.[22][23]
In 1983J. L. Nicolas proved thatfor infinitely manyn, whereφ(n) isEuler's totient function andγ isEuler's constant. Ribenboim remarks that: "The method of proof is interesting, in that the inequality is shown first under the assumption that the Riemann hypothesis is true, secondly under the contrary assumption."[24]
The Riemann hypothesis can be generalized by replacing the Riemann zeta function by the formally similar, but much more general, globalL-functions. In this broader setting, one expects the non-trivial zeros of the globalL-functions to have real part 1/2. It is these conjectures, rather than the classical Riemann hypothesis only for the single Riemann zeta function, which account for the true importance of the Riemann hypothesis in mathematics.
Artin (1924) introduced global zeta functions of (quadratic)function fields and conjectured an analogue of the Riemann hypothesis for them, which has been proved by Hasse in the genus 1 case and byWeil (1948) in general. For instance, the fact that theGauss sum, of the quadratic character of afinite field of sizeq (withq odd), has absolute value is actually an instance of the Riemann hypothesis in the function field setting. This ledWeil (1949) to conjecture a similar statement for allalgebraic varieties; the resultingWeil conjectures were proved byPierre Deligne (1974,1980).
Arithmetic zeta functions of arithmetic schemes and their L-factors
Arithmetic zeta functions generalise the Riemann and Dedekind zeta functions as well as the zeta functions of varieties over finite fields to every arithmetic scheme or a scheme of finite type over integers. The arithmetic zeta function of a regular connectedequidimensional arithmetic scheme of Kronecker dimensionn can be factorized into the product of appropriately defined L-factors and an auxiliary factorJean-Pierre Serre (1969–1970). Assuming a functional equation and meromorphic continuation, the generalized Riemann hypothesis for the L-factor states that its zeros inside the critical strip lie on the central line. Correspondingly, the generalized Riemann hypothesis for the arithmetic zeta function of a regular connected equidimensional arithmetic scheme states that its zeros inside the critical strip lie on vertical lines and its poles inside the critical strip lie on vertical lines. This is known for schemes in positive characteristic and follows fromPierre Deligne (1974,1980), but remains entirely unknown in characteristic zero.
Selberg (1956) introduced theSelberg zeta function of a Riemann surface. These are similar to the Riemann zeta function: they have a functional equation, and an infinite product similar to the Euler product but taken over closed geodesics rather than primes. TheSelberg trace formula is the analogue for these functions of theexplicit formulas in prime number theory. Selberg proved that the Selberg zeta functions satisfy the analogue of the Riemann hypothesis, with the imaginary parts of their zeros related to theeigenvalues of the Laplacian operator of the Riemann surface.
TheIhara zeta function of a finite graph is an analogue of theSelberg zeta function, which was first introduced byYasutaka Ihara in the context of discrete subgroups of the two-by-two p-adic special linear group. A regular finite graph is aRamanujan graph, a mathematical model of efficient communication networks, if and only if its Ihara zeta function satisfies the analogue of the Riemann hypothesis as was pointed out byT. Sunada.
Montgomery (1973) suggested thepair correlation conjecture that the correlation functions of the (suitably normalized) zeros of the zeta function should be the same as those of the eigenvalues of arandom hermitian matrix.Odlyzko (1987) showed that this is supported by large-scale numerical calculations of these correlation functions.
Montgomery showed that (assuming the Riemann hypothesis) at least 2/3 of all zeros are simple, and a related conjecture is that all zeros of the zeta function are simple (or more generally have no non-trivial integer linear relations between their imaginary parts).Dedekind zeta functions of algebraic number fields, which generalize the Riemann zeta function, often do have multiple complex zeros.[25] This is because the Dedekind zeta functions factorize as a product of powers ofArtin L-functions, so zeros of Artin L-functions sometimes give rise to multiple zeros of Dedekind zeta functions. Other examples of zeta functions with multiple zeros are the L-functions of someelliptic curves: these can have multiple zeros at the real point of their critical line; theBirch-Swinnerton-Dyer conjecture predicts that the multiplicity of this zero is the rank of the elliptic curve.
Several mathematicians have addressed the Riemann hypothesis, but none of their attempts has yet been accepted as a proof.Watkins (2021) lists some incorrect solutions.
Hilbert and Pólya suggested that one way to derive the Riemann hypothesis would be to find aself-adjoint operator, from the existence of which the statement on the real parts of the zeros ofζ(s) would follow when one applies the criterion on realeigenvalues. Some support for this idea comes from several analogues of the Riemann zeta functions whose zeros correspond to eigenvalues of some operator: the zeros of a zeta function of a variety over a finite field correspond to eigenvalues of aFrobenius element on anétale cohomology group, the zeros of aSelberg zeta function are eigenvalues of aLaplacian operator of a Riemann surface, and the zeros of ap-adic zeta function correspond to eigenvectors of a Galois action onideal class groups.
In 1999,Michael Berry andJonathan Keating conjectured that there is some unknown quantization of the classical HamiltonianH =xp so thatand even more strongly, that the Riemann zeros coincide with the spectrum of the operator. This is in contrast tocanonical quantization, which leads to theHeisenberg uncertainty principle and thenatural numbers as spectrum of thequantum harmonic oscillator. The crucial point is that the Hamiltonian should be a self-adjoint operator so that the quantization would be a realization of the Hilbert–Pólya program. In a connection with this quantum mechanical problem Berry and Connes had proposed that the inverse of the potential of the Hamiltonian is connected to thehalf-derivative of the functionthen, in Hilbert-Polya approachThis yields a Hamiltonian whose eigenvalues are the square of the imaginary part of the Riemann zeros, and also that thefunctional determinant of thisHamiltonian operator is just theRiemann Xi function. In fact the Riemann Xi function would be proportional to the functional determinant (Hadamard product)However this operator is not useful in practice since it includes the inverse function (implicit function) of the potential but not the potential itself.The analogy with the Riemann hypothesis overfinite fields suggests that the Hilbert space containing eigenvectors corresponding to the zeros might be some sort of firstcohomology group of thespectrum Spec (Z) of the integers.Deninger (1998) described some of the attempts to find such a cohomology theory.[27]
Zagier (1981) constructed a natural space of invariant functions on the upper half plane that has eigenvalues under the Laplacian operator that correspond to zeros of the Riemann zeta function—and remarked that in the unlikely event that one could show the existence of a suitable positive definite inner product on this space, the Riemann hypothesis would follow.Cartier (1982) discussed a related example, where due to a bizarre bug a computer program listed zeros of the Riemann zeta function as eigenvalues of the sameLaplacian operator.
Schumayer & Hutchinson (2011) surveyed some of the attempts to construct a suitable physical model related to the Riemann zeta function.
TheLee–Yang theorem states that the zeros of certainpartition functions instatistical mechanics all lie on a "critical line" with their real part equal to 0, and this has led to some speculation about a relationship with the Riemann hypothesis.[28]
Pál Turán (1948) showed that if the functionshave no zeros when the real part ofs is greater than one thenwhere λ(n) is theLiouville function given by (−1)r ifn hasr prime factors. He showed that this in turn would imply that the Riemann hypothesis is true. ButHaselgrove (1958) proved thatT(x) is negative for infinitely manyx (and also disproved the closely relatedPólya conjecture), andBorwein, Ferguson & Mossinghoff (2008) showed that the smallest suchx is72185376951205.Spira (1968) showed by numerical calculation that the finiteDirichlet series above forN = 19 has a zero with real part greater than 1. Turán also showed that a somewhat weaker assumption, the nonexistence of zeros with real part greater than1 +N−1/2+ε for largeN in the finite Dirichlet series above, would also imply the Riemann hypothesis, butMontgomery (1983) showed that for all sufficiently largeN these series have zeros with real part greater than1 + (log logN)/(4 logN). Therefore, Turán's result isvacuously true and cannot help prove the Riemann hypothesis.
Louis de Branges (1992) showed that the Riemann hypothesis would follow from a positivity condition on a certainHilbert space ofentire functions.HoweverConrey & Li (2000) showed that the necessary positivity conditions are not satisfied. Despite this obstacle, de Branges has continued to work on an attempted proof of the Riemann hypothesis along the same lines, but this has not been widely accepted by other mathematicians.[29]
The Riemann hypothesis implies that the zeros of the zeta function form aquasicrystal, a distribution with discrete support whoseFourier transform also has discrete support.Dyson (2009) suggested trying to prove the Riemann hypothesis by classifying, or at least studying, 1-dimensional quasicrystals.
Arithmetic zeta functions of models of elliptic curves over number fields
When one goes from geometric dimension one, e.g. analgebraic number field, to geometric dimension two, e.g. a regular model of anelliptic curve over a number field, the two-dimensional part of the generalized Riemann hypothesis for thearithmetic zeta function of the model deals with the poles of the zeta function. In dimension one the study of the zeta integral inTate's thesis does not lead to new important information on the Riemann hypothesis. Contrary to this, in dimension two work ofIvan Fesenko on two-dimensional generalisation of Tate's thesis includes an integral representation of a zeta integral closely related to the zeta function. In this new situation, not possible in dimension one, the poles of the zeta function can be studied via the zeta integral and associated adele groups. Related conjecture ofFesenko (2010) on the positivity of the fourth derivative of a boundary function associated to the zeta integral essentially implies the pole part of the generalized Riemann hypothesis. Suzuki (2011) proved that the latter, together with some technical assumptions, implies Fesenko's conjecture.
Deligne's proof of the Riemann hypothesis over finite fields used the zeta functions of product varieties, whose zeros and poles correspond to sums of zeros and poles of the original zeta function, in order to bound the real parts of the zeros of the original zeta function. By analogy,Kurokawa (1992) introduced multiple zeta functions whose zeros and poles correspond to sums of zeros and poles of the Riemann zeta function. To make the series converge he restricted to sums of zeros or poles all with non-negative imaginary part. So far, the known bounds on the zeros and poles of the multiple zeta functions are not strong enough to give useful estimates for the zeros of the Riemann zeta function.
The functional equation combined with theargument principle implies that the number of zeros of the zeta function with imaginary part between 0 andT is given by
fors = 1/2 +iT, where the argument is defined by varying it continuously along the line withIm(s) =T, starting with argument 0 at∞ +iT. This is the sum of a large but well understood term
and a small but rather mysterious term
So the density of zeros with imaginary part nearT is about log(T)/(2π), and the functionS describes the small deviations from this. The functionS(t) jumps by 1 at each zero of the zeta function, and fort ≥ 8 it decreasesmonotonically between zeros with derivative close to−logt.
Karatsuba (1996) proved that every interval(T,T +H] for contains at least
points where the functionS(t) changes sign.
Selberg (1946) showed that the average moments of even powers ofS are given by
This suggests thatS(T)/(log logT)1/2 resembles aGaussian random variable with mean 0 and variance 2π2 (Ghosh (1983) proved this fact).In particular |S(T)| is usually somewhere around (log logT)1/2, but occasionally much larger. The exact order of growth ofS(T) is not known. There has been no unconditional improvement to Riemann's original boundS(T) =O(logT), though the Riemann hypothesis implies the slightly smaller boundS(T) =O(logT/log logT).[15] The true order of magnitude may be somewhat less than this, as random functions with the same distribution asS(T) tend to have growth of order about log(T)1/2. In the other direction it cannot be too small:Selberg (1946) showed thatS(T) ≠o((logT)1/3/(log logT)7/3), and assuming the Riemann hypothesis Montgomery showed thatS(T) ≠o((logT)1/2/(log logT)1/2).
Numerical calculations confirm thatS grows very slowly:|S(T)| < 1 forT < 280,|S(T)| < 2 forT <6800000, and the largest value of |S(T)| found so far is not much larger than 3.[30]
Riemann's estimateS(T) =O(logT) implies that the gaps between zeros are bounded, and Littlewood improved this slightly, showing that the gaps between their imaginary parts tend to 0.
Hadamard (1896) andde la Vallée-Poussin (1896) independently proved that no zeros could lie on the lineRe(s) = 1. Together with the functional equation and the fact that there are no zeros with real part greater than 1, this showed that all non-trivial zeros must lie in the interior of the critical strip0 < Re(s) < 1. This was a key step in their first proofs of theprime number theorem.
Both the original proofs that the zeta function has no zeros with real part 1 are similar, and depend on showing that ifζ(1 +it) vanishes, thenζ(1 + 2it) is singular, which is not possible. One way of doing this is by using the inequality
forσ > 1,t real, and looking at the limit asσ → 1. This inequality follows by taking the real part of the log of the Euler product to see that
where the sum is over all prime powerspn, so that
which is at least 1 because all the terms in the sum are positive, due to the inequality
The most extensive computer search by Platt andTrudgian[19] for counterexamples of the Riemann hypothesis has verified it for|t| ≤3.0001753328×1012. Beyond that zero-free regions are known as inequalities concerningσ +i t, which can be zeroes. The oldest version is fromDe la Vallée-Poussin (1899–1900), who proved there is a region without zeroes that satisfies1 −σ ≥C/log(t) for some positive constantC. In other words, zeros cannot be too close to the lineσ = 1: there is a zero-free region close to this line. This has been enlarged by several authors using methods such asVinogradov's mean-value theorem.
The most recent paper[31] by Mossinghoff, Trudgian and Yang is from December 2022 and provides four zero-free regions that improved the previous results of Kevin Ford from 2002, Mossinghoff and Trudgian themselves from 2015 and Pace Nielsen's slight improvement of Ford from October 2022:
whenever,
whenever (largest known region in the bound),
whenever (largest known region in the bound) and
whenever (largest known region in its own bound)
The paper also presents an improvement to the second zero-free region, whose bounds are unknown on account of being merely assumed to be "sufficiently large" to fulfill the requirements of the paper's proof. This region is
Hardy (1914) andHardy & Littlewood (1921) showed there are infinitely many zeros on the critical line, by considering moments of certain functions related to the zeta function.Selberg (1942) proved that at least a (small) positive proportion of zeros lie on the line.Levinson (1974) improved this to one-third of the zeros by relating the zeros of the zeta function to those of its derivative, andConrey (1989) improved this further to two-fifths. In 2020, this estimate was extended to five-twelfths by Pratt, Robles,Zaharescu and Zeindler[32] by considering extended mollifiers that can accommodate higher order derivatives of the zeta function and their associated Kloosterman sums.
Most zeros lie close to the critical line. More precisely,Bohr & Landau (1914) showed that for any positiveε, the number of zeros with real part at least 1/2+ε and imaginary part at between −T andT is. Combined with the facts that zeros on the critical strip are symmetric about the critical line and that the total number of zeros in the critical strip is,almost all non-trivial zeros are within a distanceε of the critical line.Ivić (1985) gives several more precise versions of this result, calledzero density estimates, which bound the number of zeros in regions with imaginary part at mostT and real part at least1/2 +ε.
The next two conjectures ofHardy andJohn Edensor Littlewood on the distance between real zeros of and on the density of zeros of on the interval for sufficiently large, and and with as small as possible value of, where is an arbitrarily small number, open two new directions in the investigation of the Riemann zeta function:
For any there exists a lower bound such that for and the interval contains a zero of odd order of the function.
Let be the total number of real zeros, and be the total number of zeros of odd order of the function lying on the interval.
For any there exists and some, such that for and the inequality is true.
Atle Selberg (1942) investigated the problem of Hardy–Littlewood2 and proved that for anyε > 0 there exists such andc =c(ε) > 0, such that for and the inequality is true. Selberg conjectured that this could be tightened to.A. A. Karatsuba (1984a,1984b,1985) proved that for a fixedε satisfying the condition 0 <ε < 0.001, a sufficiently largeT and,, the interval(T,T+H) contains at leastcH log(T) real zeros of theRiemann zeta function and therefore confirmed the Selberg conjecture. The estimates of Selberg and Karatsuba can not be improved in respect of the order of growth asT → ∞.
Karatsuba (1992) proved that an analog of the Selberg conjecture holds for almost all intervals(T,T+H],, whereε is an arbitrarily small fixed positive number. The Karatsuba method permits to investigate zeros of the Riemann zeta function on "supershort" intervals of the critical line, that is, on the intervals(T,T+H], the lengthH of which grows slower than any, even arbitrarily small degreeT. In particular, he proved that for any given numbersε, satisfying the conditions almost all intervals(T,T+H] for contain at least zeros of the function. This estimate is quite close to the one that follows from the Riemann hypothesis.
has the same zeros as the zeta function in the critical strip, and is real on the critical line because of the functional equation, so one can prove the existence of zeros exactly on the real line between two points by checking numerically that the function has opposite signs at these points. Usually one writes
where Hardy'sZ function and theRiemann–Siegel theta functionθ are uniquely defined by this and the condition that they are smooth real functions withθ(0) = 0.By finding many intervals where the functionZ changes sign one can show that there are many zeros on the critical line. To verify the Riemann hypothesis up to a givenimaginary partT of the zeros, one also has to check that there are no further zeros off the line in this region. This can be done by calculating the total number of zeros in the region usingTuring's method and checking that it is the same as the number of zeros found on the line. This allows one to verify the Riemann hypothesis computationally up to any desired value ofT (provided all the zeros of the zeta function in this region are simple and on the critical line).[33][34]
These calculations can also be used to estimate for finite ranges of. For example, using the latest result from 2020 (zeros up to height), it has been shown that
In general, this inequality holds if
and
where is the largest known value such that the Riemann hypothesis is true for all zeros with.[35]
Some calculations of zeros of the zeta function are listed below, where the "height" of a zero is the magnitude of its imaginary part, and the height of thenth zero is denoted byγn. So far all zeros that have been checked are on the critical line and are simple. (A multiple zero would cause problems for the zero finding algorithms, which depend on finding sign changes between zeros.) For tables of the zeros, seeHaselgrove & Miller (1960) orOdlyzko.
J. P.Gram (1903) used theEuler–Maclaurin formula and discoveredGram's law. He showed that all 10 zeros with imaginary part at most 50 range lie on the critical line with real part 1/2 by computing the sum of the inverse 10th powers of the roots he found.
1914
79 (γn ≤ 200)
R. J.Backlund (1914) introduced a better method of checking all the zeros up to that point are on the line, by studying the argumentS(T) of the zeta function.
1925
138 (γn ≤ 300)
J. I.Hutchinson (1925) found the first failure of Gram's law, at the Gram pointg126.
1935
195
E. C.Titchmarsh (1935) used the recently rediscoveredRiemann–Siegel formula, which is much faster than Euler–Maclaurin summation. It takes about O(T3/2 + ε) steps to check zeros with imaginary part less thanT, while the Euler–Maclaurin method takes about O(T2 + ε) steps.
1936
1041
E. C.Titchmarsh (1936) and L. J. Comrie were the last to find zeros by hand.
1953
1104
A. M.Turing (1953) found a more efficient way to check that all zeros up to some point are accounted for by the zeros on the line, by checking thatZ has the correct sign at several consecutive Gram points and using the fact thatS(T) has average value 0. This requires almost no extra work because the sign ofZ at Gram points is already known from finding the zeros, and is still the usual method used. This was the first use of a digital computer to calculate the zeros.
1956
15000
D. H.Lehmer (1956) discovered a few cases where the zeta function has zeros that are "only just" on the line: two zeros of the zeta function are so close together that it is unusually difficult to find a sign change between them. This is called "Lehmer's phenomenon", and first occurs at the zeros with imaginary parts 7005.063 and 7005.101, which differ by only .04 while the average gap between other zeros near this point is about 1.
A. M. Odlyzko (1992) computed 175 million zeros of heights around 1020 and a few more of heights around 2×1020, and gave an extensive discussion of the results.
1998
10000 of large (≈1021) height
A. M. Odlyzko (1998) computed some zeros of height about 1021
AGram point is a point on the critical line 1/2 + it where the zeta function is real and non-zero. Using the expression for the zeta function on the critical line,ζ(1/2 +it) =Z(t)e−iθ(t), where Hardy's function,Z, is real for realt, andθ is theRiemann–Siegel theta function, we see that zeta is real whensin(θ(t)) = 0. This implies thatθ(t) is an integer multiple ofπ, which allows for the location of Gram points to be calculated fairly easily by inverting the formula forθ. They are usually numbered asgn forn = 0, 1, ..., wheregn is the unique solution ofθ(t) =nπ.
Gram observed that there was often exactly one zero of the zeta function between any two consecutive Gram points; Hutchinson called this observationGram's law. There are several other closely related statements that are also sometimes called Gram's law: for example,(−1)nZ(gn) is usually positive, orZ(t) usually has opposite sign at consecutive Gram points. The imaginary partsγn of the first few zeros (in blue) and the first few Gram pointsgn are given in the following table
g−1
γ1
g0
γ2
g1
γ3
g2
γ4
g3
γ5
g4
γ6
g5
0
3.436
9.667
14.135
17.846
21.022
23.170
25.011
27.670
30.425
31.718
32.935
35.467
37.586
38.999
This is a polar plot of the first 20 real valuesrn of the zeta function along the critical line,ζ(1/2 +it), witht running from 0 to 50. The values ofrn in this range are the first 10 non-trivialRiemann zeta function zeros and the first 10Gram points, each labeled byn. Fifty red points have been plotted between eachrn, and the zeros are projected onto concentric magenta rings scaled to show the relative distance between their values of t. Gram's law states that the curve usually crosses the real axis once between zeros.
The first failure of Gram's law occurs at the 127th zero and the Gram pointg126, which are in the "wrong" order.
g124
γ126
g125
g126
γ127
γ128
g127
γ129
g128
279.148
279.229
280.802
282.455
282.465
283.211
284.104
284.836
285.752
A Gram pointt is called good if the zeta function is positive at1/2 +it. The indices of the "bad" Gram points whereZ has the "wrong" sign are 126, 134, 195, 211, ... (sequenceA114856 in theOEIS). AGram block is an interval bounded by two good Gram points such that all the Gram points between them are bad. A refinement of Gram's law called Rosser's rule due toRosser, Yohe & Schoenfeld (1969) says that Gram blocks often have the expected number of zeros in them (the same as the number of Gram intervals), even though some of the individual Gram intervals in the block may not have exactly one zero in them. For example, the interval bounded byg125 andg127 is a Gram block containing a unique bad Gram pointg126, and contains the expected number 2 of zeros although neither of its two Gram intervals contains a unique zero. Rosser et al. checked that there were no exceptions to Rosser's rule in the first 3 million zeros, although there are infinitely many exceptions to Rosser's rule over the entire zeta function.
Gram's rule and Rosser's rule both say that in some sense zeros do not stray too far from their expected positions. The distance of a zero from its expected position is controlled by the functionS defined above, which grows extremely slowly: its average value is of the order of (log logT)1/2, which only reaches 2 for T around 1024. This means that both rules hold most of the time for smallT but eventually break down often. Indeed,Trudgian (2011) showed that both Gram's law and Rosser's rule fail in a positive proportion of cases. To be specific, it is expected that in about 66% one zero is enclosed by two successive Gram points, but in 17% no zero and in 17% two zeros are in such a Gram-interval on the long runHanga (2020).
Mathematical papers about the Riemann hypothesis tend to be cautiously noncommittal about its truth. Of authors who express an opinion, most of them, such asRiemann (1859) andBombieri (2000), imply that they expect (or at least hope) that it is true. The few authors who express serious doubt about it includeIvić (2008), who lists some reasons for skepticism, andLittlewood (1962), who flatly states that he believes it false, that there is no evidence for it and no imaginable reason it would be true. The consensus of the survey articles (Bombieri 2000,Conrey 2003, andSarnak 2005) is that the evidence for it is strong but not overwhelming, so that while it is probably true there is reasonable doubt.
Several analogues of the Riemann hypothesis have already been proved. The proof of the Riemann hypothesis for varieties over finite fields byDeligne (1974) is possibly the single strongest theoretical reason in favor of the Riemann hypothesis. This provides some evidence for the more general conjecture that all zeta functions associated withautomorphic forms satisfy a Riemann hypothesis, which includes the classical Riemann hypothesis as a special case. SimilarlySelberg zeta functions satisfy the analogue of the Riemann hypothesis, and are in some ways similar to the Riemann zeta function, having a functional equation and an infinite product expansion analogous to the Euler product expansion. But there are also some major differences; for example, they are not given by Dirichlet series. The Riemann hypothesis for theGoss zeta function was proved bySheats (1998). In contrast to these positive examples, someEpstein zeta functions do not satisfy the Riemann hypothesis even though they have an infinite number of zeros on the critical line.[15] These functions are quite similar to the Riemann zeta function, and have a Dirichlet series expansion and afunctional equation, but the ones known to fail the Riemann hypothesis do not have anEuler product and are not directly related toautomorphic representations.
At first, the numerical verification that many zeros lie on the line seems strong evidence for it. But analytic number theory has had many conjectures supported by substantial numerical evidence that turned out to be false. SeeSkewes number for a notorious example, where the first exception to a plausible conjecture related to the Riemann hypothesis probably occurs around 10316; a counterexample to the Riemann hypothesis with imaginary part this size would be far beyond anything that can currently be computed using a direct approach. The problem is that the behavior is often influenced by very slowly increasing functions such as log logT, that tend to infinity, but do so so slowly that this cannot be detected by computation. Such functions occur in the theory of the zeta function controlling the behavior of its zeros; for example the functionS(T) above has average size around (log logT)1/2. AsS(T) jumps by at least 2 at any counterexample to the Riemann hypothesis, one might expect any counterexamples to the Riemann hypothesis to start appearing only whenS(T) becomes large. It is never much more than 3 as far as it has been calculated, but is known to be unbounded, suggesting that calculations may not have yet reached the region of typical behavior of the zeta function.
Denjoy's probabilistic argument for the Riemann hypothesis[37] is based on the observation that ifμ(x) is a random sequence of "1"s and "−1"s then, for everyε > 0, thepartial sums (the values of which are positions in asimple random walk) satisfy the bound withprobability 1. The Riemann hypothesis is equivalent to this bound for theMöbius function μ and theMertens functionM derived in the same way from it. In other words, the Riemann hypothesis is in some sense equivalent to saying thatμ(x) behaves like a random sequence of coin tosses. Whenμ(x) is nonzero its sign gives theparity of the number of prime factors ofx, so informally the Riemann hypothesis says that the parity of the number of prime factors of an integer behaves randomly. Such probabilistic arguments in number theory often give the right answer, but tend to be very hard to make rigorous, and occasionally give the wrong answer for some results, such asMaier's theorem.
The calculations inOdlyzko (1987) show that the zeros of the zeta function behave very much like the eigenvalues of a randomHermitian matrix, suggesting that they are the eigenvalues of some self-adjoint operator, which would imply the Riemann hypothesis. All attempts to find such an operator have failed.
There are several theorems, such asGoldbach's weak conjecture for sufficiently large odd numbers, that were first proved using the generalized Riemann hypothesis, and later shown to be true unconditionally. This could be considered as weak evidence for the generalized Riemann hypothesis, as several of its "predictions" are true.
Lehmer's phenomenon,[38] where two zeros are sometimes very close, is sometimes given as a reason to disbelieve the Riemann hypothesis. But one would expect this to happen occasionally by chance even if the Riemann hypothesis is true, and Odlyzko's calculations suggest that nearby pairs of zeros occur just as often as predicted byMontgomery's conjecture.
Patterson suggests that the most compelling reason for the Riemann hypothesis for most mathematicians is the hope that primes are distributed as regularly as possible.[39]
^Euler, Leonhard (1744).Variae observationes circa series infinitas.Commentarii academiae scientiarum Petropolitanae 9, pp. 160–188, Theorems 7 and 8. In Theorem 7 Euler proves the formula in the special case, and in Theorem 8 he proves it more generally. In the first corollary to his Theorem 7 he notes that, and he makes use of this latter result in his Theorem 19, to show that the sum of the inverses of the prime numbers is.
^Mossinghoff, Michael J.; Trudgian, Timothy S.; Yang, Andrew (2022-12-13). "Explicit zero-free regions for the Riemann zeta-function".arXiv:2212.06867 [math.NT].
^p. 75: "One should probably add to this list the 'Platonic' reason that one expects the natural numbers to be the most perfect idea conceivable, and that this is only compatible with the primes being distributed in the most regular fashion possible ..."
Borwein, Peter; Choi, Stephen; Rooney, Brendan; Weirathmueller, Andrea, eds. (2008),The Riemann Hypothesis: A Resource for the Afficionado and Virtuoso Alike, CMS Books in Mathematics, New York: Springer,doi:10.1007/978-0-387-72126-2,ISBN978-0-387-72125-5
Cartier, P. (1982), "Comment l'hypothèse de Riemann ne fut pas prouvée",Seminar on Number Theory, Paris 1980–81 (Paris, 1980/1981), Progr. Math., vol. 22, Boston, MA: Birkhäuser Boston, pp. 35–48,MR0693308
Franel, J.;Landau, E. (1924), "Les suites de Farey et le problème des nombres premiers" (Franel, 198–201); "Bemerkungen zu der vorstehenden Abhandlung von Herrn Franel (Landau, 202–206)",Göttinger Nachrichten:198–206
Ghosh, Amit (1983), "On the Riemann zeta function—mean value theorems and the distribution of |S(T)|",J. Number Theory,17:93–102,doi:10.1016/0022-314X(83)90010-0
Hadamard, Jacques (1896), "Sur la distribution des zéros de la fonctionζ(s) et ses conséquences arithmétiques",Bulletin de la Société Mathématique de France,14:199–220,doi:10.24033/bsmf.545 Reprinted in (Borwein et al. 2008).
Ingham, A.E. (1932),The Distribution of Prime Numbers, Cambridge Tracts in Mathematics and Mathematical Physics, vol. 30, Cambridge University Press. Reprinted 1990,ISBN978-0-521-39789-6,MR1074573
Ivić, Aleksandar (2008), "On some reasons for doubting the Riemann hypothesis", in Borwein, Peter; Choi, Stephen; Rooney, Brendan; Weirathmueller, Andrea (eds.),The Riemann Hypothesis: A Resource for the Afficionado and Virtuoso Alike, CMS Books in Mathematics, New York: Springer, pp. 131–160,arXiv:math.NT/0311162,ISBN978-0-387-72125-5
Karatsuba, A. A. (1984a), "Zeros of the functionζ(s) on short intervals of the critical line",Izv. Akad. Nauk SSSR, Ser. Mat. (in Russian),48 (3):569–584,MR0747251
Karatsuba, A. A. (1984b), "Distribution of zeros of the functionζ(1/2 + it)",Izv. Akad. Nauk SSSR, Ser. Mat. (in Russian),48 (6):1214–1224,MR0772113
Karatsuba, A. A. (1985), "Zeros of the Riemann zeta-function on the critical line",Trudy Mat. Inst. Steklov. (in Russian) (167):167–178,MR0804073
Montgomery, Hugh L. (1973), "The pair correlation of zeros of the zeta function",Analytic number theory, Proc. Sympos. Pure Math., vol. XXIV, Providence, R.I.: American Mathematical Society, pp. 181–193,MR0337821 Reprinted in (Borwein et al. 2008).
Montgomery, Hugh L.; Vaughan, Robert C. (2007),Multiplicative Number Theory I. Classical Theory, Cambridge studies in advanced mathematics, vol. 97, Cambridge University Press.ISBN978-0-521-84903-6
Nyman, Bertil (1950),On the One-Dimensional Translation Group and Semi-Group in Certain Function Spaces, PhD Thesis, University of Uppsala: University of Uppsala,MR0036444
Platt, Dave; Trudgian, Timothy (January 2021), "The Riemann hypothesis is true up to 3·1012",Bulletin of the London Mathematical Society,53 (3), Wiley:792–797,arXiv:2004.09765,doi:10.1112/blms.12460,S2CID234355998
Radziejewski, Maciej (2007), "Independence of Hecke zeta functions of finite order over normal fields",Transactions of the American Mathematical Society,359 (5):2383–2394,doi:10.1090/S0002-9947-06-04078-5,MR2276625,There are infinitely many nonisomorphic algebraic number fields whose Dedekind zeta functions have infinitely many nontrivial multiple zeros.
Rosser, J. Barkley; Yohe, J. M.;Schoenfeld, Lowell (1969), "Rigorous computation and the zeros of the Riemann zeta-function. (With discussion)",Information Processing 68 (Proc. IFIP Congress, Edinburgh, 1968), Vol. 1: Mathematics, Software, Amsterdam: North-Holland, pp. 70–76,MR0258245
Selberg, Atle (1942), "On the zeros of Riemann's zeta-function",SKR. Norske Vid. Akad. Oslo I.,10: 59 pp,MR0010712
Selberg, Atle (1946), "Contributions to the theory of the Riemann zeta-function",Arch. Math. Naturvid.,48 (5):89–155,MR0020594
Selberg, Atle (1956), "Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series",J. Indian Math. Soc., New Series,20:47–87,MR0088511
Siegel, C. L. (1932), "Über Riemanns Nachlaß zur analytischen Zahlentheorie",Quellen Studien zur Geschichte der Math. Astron. Und Phys. Abt. B: Studien 2:45–80 Reprinted in Gesammelte Abhandlungen, Vol. 1. Berlin: Springer-Verlag, 1966. Translation availabke atCarl, Siegel (11 October 2018) [1932],On Riemanns Nachlass for Analytic Number Theory, translated by Barkan, Eric; Sklar, David,arXiv:1810.05198
Suzuki, Masatoshi (2011), "Positivity of certain functions associated with analysis on elliptic surfaces",Journal of Number Theory,131 (10):1770–1796,doi:10.1016/j.jnt.2011.03.007
Trudgian, Timothy S. (2014), "An improved upper bound for the argument of the Riemann zeta function on the critical line II",J. Number Theory,134:280–292,arXiv:1208.5846,doi:10.1016/j.jnt.2013.07.017
Trudgian, Timothy (2011), "On the success and failure of Gram's Law and the Rosser Rule",Acta Arithmetica,125 (3):225–256,doi:10.4064/aa148-3-2
Turán, Paul (1948), "On some approximative Dirichlet-polynomials in the theory of the zeta-function of Riemann",Danske Vid. Selsk. Mat.-Fys. Medd.,24 (17): 36,MR0027305 Reprinted in (Borwein et al. 2008).
de la Vallée-Poussin, Ch.J. (1896), "Recherches analytiques sur la théorie des nombres premiers",Ann. Soc. Sci. Bruxelles,20:183–256
de la Vallée-Poussin, Ch.J. (1899–1900), "Sur la fonctionζ(s) de Riemann et la nombre des nombres premiers inférieurs à une limite donnée",Mem. Couronnes Acad. Sci. Belg.,59 (1) Reprinted in (Borwein et al. 2008).
Weil, André (1948),Sur les courbes algébriques et les variétés qui s'en déduisent, Actualités Sci. Ind., no. 1041 = Publ. Inst. Math. Univ. Strasbourg 7 (1945), Hermann et Cie., Paris,MR0027151
Weinberger, Peter J. (1973), "On Euclidean rings of algebraic integers",Analytic number theory ( St. Louis Univ., 1972), Proc. Sympos. Pure Math., vol. 24, Providence, R.I.: Amer. Math. Soc., pp. 321–332,MR0337902
Wiles, Andrew (2000), "Twenty years of number theory",Mathematics: frontiers and perspectives, Providence, R.I.: American Mathematical Society, pp. 329–342,ISBN978-0-8218-2697-3,MR1754786
Zagier, Don (1981), "Eisenstein series and the Riemann zeta function",Automorphic forms, representation theory and arithmetic (Bombay, 1979), Tata Inst. Fund. Res. Studies in Math., vol. 10, Tata Inst. Fundamental Res., Bombay, pp. 275–301,MR0633666
Pegg, Ed (2004),Ten Trillion Zeta Zeros, Math Games website, archived fromthe original on 2004-11-02, retrieved2004-10-20. A discussion of Xavier Gourdon's calculation of the first ten trillion non-trivial zeros