Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Ribulose 1,5-bisphosphate

From Wikipedia, the free encyclopedia
"RuBP" redirects here; not to be confused withRubpy.
Ribulose 1,5-bisphosphate
Skeletal formula of RuBP
Skeletal formula of RuBP
The acid form of the RuBP anion
Ball-and-stick model, based on x-ray diffraction data
Ball-and-stick model, based on x-ray diffraction data
Names
IUPAC name
1,5-Di-O-phosphono-D-ribulose
Other names
Ribulose 1,5-diphosphate
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
KEGG
UNII
  • InChI=1S/C5H12O11P2/c6-3(1-15-17(9,10)11)5(8)4(7)2-16-18(12,13)14/h3,5-6,8H,1-2H2,(H2,9,10,11)(H2,12,13,14)/t3-,5-/m1/s1 checkY
    Key: YAHZABJORDUQGO-NQXXGFSBSA-N checkY
  • O=P(O)(OCC(=O)[C@H](O)[C@H](O)COP(=O)(O)O)O
Properties
C5H12O11P2
Molar mass310.088 g·mol−1
Except where otherwise noted, data are given for materials in theirstandard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)
Chemical compound

Ribulose 1,5-bisphosphate (RuBP) is anorganic substance that is involved inphotosynthesis, notably as the principalCO2 acceptor in plants.[1]: 2  It is a colourless anion, a doublephosphate ester of theketopentose (ketone-containing sugar with fivecarbon atoms) calledribulose. Salts of RuBP can be isolated, but its crucial biological function happens in solution.[2] RuBP occurs not only in plants but in alldomains of life, includingArchaea,Bacteria, andEukarya.[3]

History

[edit]

RuBP was originally discovered byAndrew Benson in 1951 while working in the lab ofMelvin Calvin at UC Berkeley.[4][5] Calvin, who had been away from the lab at the time of discovery and was not listed as a co-author, controversially removed the full molecule name from the title of the initial paper, identifying it solely as "ribulose".[4][6] At the time, the molecule was known asribulose diphosphate (RDP or RuDP) but the prefixdi- was changed tobis- to emphasize the nonadjacency of the two phosphate groups.[4][5][7]

Role in photosynthesis and the Calvin-Benson Cycle

[edit]
See also:Calvin-Benson Cycle

The enzyme ribulose-1,5-bisphosphate carboxylase-oxygenase (rubisco) catalyzes the reaction between RuBP andcarbon dioxide. The product is the highly unstable six-carbon intermediate known as 3-keto-2-carboxyarabinitol 1,5-bisphosphate, or 2'-carboxy-3-keto-D-arabinitol 1,5-bisphosphate (CKABP).[8] This six-carbonβ-ketoacid intermediate hydrates into another six-carbon intermediate in the form of agem-diol.[9] This intermediate then cleaves into two molecules of3-phosphoglycerate (3-PGA) which is used in a number of metabolic pathways and is converted into glucose.[10][11]

In theCalvin-Benson cycle, RuBP is a product of thephosphorylation ofribulose-5-phosphate (produced byglyceraldehyde 3-phosphate) byATP.[11][12]

The Calvin-Benson cycle showing the role of ribulose-1,5-bisphosphate.

Interactions with rubisco

[edit]

RuBP acts as anenzyme inhibitor for the enzyme rubisco, which regulates the net activity of carbon fixation.[13][14][15] When RuBP is bound to an active site of rubisco, the ability to activate via carbamylation withCO2 andMg2+ is blocked. The functionality of rubisco activase involves removing RuBP and other inhibitory bonded molecules to re-enable carbamylation on the active site.[1]: 5 

Role in photorespiration

[edit]
See also:Photorespiration

Rubisco also catalyzes RuBP with oxygen (O
2
) in an interaction calledphotorespiration, a process that is more prevalent at high temperatures.[16][17] During photorespiration RuBP combines withO
2
to become 3-PGA andphosphoglycolic acid.[18][19][20] Like the Calvin-Benson Cycle, the photorespiratory pathway has been noted for its enzymatic inefficiency[19][20] although this characterization of theenzymatic kinetics of rubisco has been contested.[21] Due to enhanced RuBP carboxylation and decreased rubisco oxygenation stemming from the increased concentration ofCO2 in thebundle sheath, rates of photorespiration are decreased inC4 plants.[1]: 103  Similarly, photorespiration is limited inCAM photosynthesis due to kinetic delays in enzyme activation, again stemming from the ratio of carbon dioxide to oxygen.[22]

Measurement

[edit]

RuBP can bemeasured isotopically via the conversion of14CO2 and RuBP intoglyceraldehyde 3-phosphate.[23] G3P can then be measured using anenzymatic optical assay.[23][24][a] Given the abundance of RuBP in biological samples, an added difficulty is distinguishing particular reservoirs of the substrate, such as the RuBP internal to a chloroplast vs external. One approach to resolving this is by subtractive inference, or measuring the total RuBP of a system, removing a reservoir (e.g. by centrifugation), re-measuring the total RuBP, and using the difference to infer the concentration in the given repository.[25]

See also

[edit]

References

[edit]
  1. ^abcLeegood, R. C.; Sharkey, T. D.; von Caemmerer, S., eds. (2000).Photosynthesis: Physiology and Metabolism. Advances in Photosynthesis. Vol. 9. Kluwer Academic Publishers.doi:10.1007/0-306-48137-5.ISBN 978-0-7923-6143-5.
  2. ^Nelson, D. L.; Cox, M. M. (2000).Lehninger, Principles of Biochemistry (3rd ed.). New York: Worth Publishing.ISBN 1-57259-153-6.
  3. ^Tabita, F. R. (1999). "Microbial ribulose 1,5-bisphosphate carboxylase/oxygenase: A different perspective".Photosynthesis Research.60:1–28.doi:10.1023/A:1006211417981.S2CID 21975329.
  4. ^abcSharkey, T. D. (2018)."Discovery of the canonical Calvin–Benson cycle"(PDF).Photosynthesis Research.140 (2):235–252.doi:10.1007/s11120-018-0600-2.OSTI 1607740.PMID 30374727.S2CID 53092349.
  5. ^abBenson, A. A. (1951). "Identificiation of Ribulose in C14O2 Photosynthesis Products".Journal of the American Chemical Society.73 (6):2971–2972.doi:10.1021/ja01150a545.
  6. ^Benson, A. A. (2005)."Following the path of carbon in photosynthesis: a personal story". In Govindjee; Beatty, J. T.; Gest, H.; Allen, J. F. (eds.).Discoveries in Photosynthesis. Advances in Photosynthesis and Respiration. Vol. 20. pp. 795–813.doi:10.1007/1-4020-3324-9_71.ISBN 978-1-4020-3324-7.
  7. ^Wildman, S. G. (2002)."Along the trail from Fraction I protein to Rubisco (ribulosebisphosphatecarboxylase-oxygenase)"(PDF).Photosynthesis Research.73 (1–3):243–250.doi:10.1023/A:1020467601966.PMID 16245127.S2CID 7622999.
  8. ^Lorimer, G. H.; Andrews, T. J.; et al. (1986). "2´-carboxy-3-keto-D-arabinitol 1,5-bisphosphate, the six-carbon intermediate of the ribulose bisphosphate carboxylase reaction".Phil. Trans. R. Soc. Lond. B.313 (1162):397–407.Bibcode:1986RSPTB.313..397L.doi:10.1098/rstb.1986.0046.
  9. ^Mauser, H.; King, W. A.; Gready, J. E.; Andrews, T. J. (2001). "CO2 Fixation by Rubisco: Computational Dissection of the Key Steps of Carboxylation, Hydration, and C−C Bond Cleavage".J. Am. Chem. Soc.123 (44):10821–10829.doi:10.1021/ja011362p.PMID 11686683.
  10. ^Kaiser, G. E."Light Independent Reactions".Biol 230: Microbiology. The Community College of Baltimore County, Catonsville Campus. Archived fromthe original on 9 May 2021. Retrieved7 May 2021.
  11. ^abHatch, M. D.; Slack, C. R. (1970). "Photosynthetic CO2-Fixation Pathways".Annual Review of Plant Physiology.21:141–162.doi:10.1146/annurev.pp.21.060170.001041.
  12. ^Bartee, L.; Shriner, W.; Creech, C. (2017)."The Light Independent Reactions (aka the Calvin Cycle)".Principles of Biology. Open Oregon Educational Resources.ISBN 978-1-63635-041-7.
  13. ^Jordan, D. B.; Chollet, R. (1983)."Inhibition of ribulose bisphosphate carboxylase by substrate ribulose 1,5-bisphosphate".Journal of Biological Chemistry.258 (22):13752–13758.doi:10.1016/S0021-9258(17)43982-2.PMID 6417133.
  14. ^Spreitzer, R. J.; Salvucci, M. E. (2002). "Rubisco: Structure, Regulatory Interactions, and Possibilities for a Better Enzyme".Annual Review of Plant Biology.53:449–475.doi:10.1146/annurev.arplant.53.100301.135233.PMID 12221984.
  15. ^Taylor, Thomas C.; Andersson, Inger (1997). "The structure of the complex between rubisco and its natural substrate ribulose 1,5-bisphosphate".Journal of Molecular Biology.265 (4):432–444.doi:10.1006/jmbi.1996.0738.PMID 9034362.
  16. ^Leegood, R. C.; Edwards, G. E. (2004)."Carbon Metabolism and Photorespiration: Temperature Dependence in Relation to Other Environmental Factors". In Baker, N. R. (ed.).Photosynthesis and the Environment. Advances in Photosynthesis and Respiration. Vol. 5. Kluwer Academic Publishers. pp. 191–221.doi:10.1007/0-306-48135-9_7.ISBN 978-0-7923-4316-5.
  17. ^Keys, A. J.; Sampaio, E. V. S. B.; et al. (1977). "Effect of Temperature on Photosynthesis and Photorespiration of Wheat Leaves".Journal of Experimental Botany.28 (3):525–533.doi:10.1093/jxb/28.3.525.
  18. ^Sharkey, T. D. (1988). "Estimating the rate of photorespiration in leaves".Physiologia Plantarum.73 (1):147–152.doi:10.1111/j.1399-3054.1988.tb09205.x.
  19. ^abKebeish, R.; Niessen, M.; et al. (2007). "Chloroplastic photorespiratory bypass increases photosynthesis and biomass production inArabidopsis thaliana".Nature Biotechnology.25 (5):593–599.doi:10.1038/nbt1299.PMID 17435746.S2CID 22879451.
  20. ^abLeegood, R. C.; Lea, P. J.; et al. (1995). "The regulation and control of photorespiration".Journal of Experimental Botany.46:1397–1414.doi:10.1093/jxb/46.special_issue.1397.JSTOR 23694986.
  21. ^Bathellier, C.; Tcherkez, G.; et al. (2018). "Rubisco is not really so bad".Plant, Cell and Environment.41 (4):705–716.doi:10.1111/pce.13149.hdl:1885/231026.PMID 29359811.S2CID 3718311.
  22. ^Niewiadomska, E.; Borland, A. M. (2008). "Crassulacean Acid Metabolism: A Cause or Consequence of Oxidative Stress in Planta?". In Lüttge, U.; Beyschlag, W.; Murata, J. (eds.).Progress in Botany. Vol. 69. pp. 247–266.doi:10.1007/978-3-540-72954-9_10.ISBN 978-3-540-72954-9.
  23. ^abLatzko, E.; Gibbs, M. (1972). "Measurement of the intermediates of the photosynthetic carbon reduction cycle, using enzymatic methods".Photosynthesis and Nitrogen Fixation Part B. Methods in Enzymology. Vol. 24. Academic Press. pp. 261–268.doi:10.1016/0076-6879(72)24073-3.ISBN 9780121818876.ISSN 0076-6879.PMID 4670193.
  24. ^Latzko, E.; Gibbs, M. (1969)."Level of Photosynthetic Intermediates in Isolated Spinach Chloroplasts".Plant Physiology.44 (3):396–402.doi:10.1104/pp.44.3.396.PMC 396097.PMID 16657074.
  25. ^Sicher, R. C.; Bahr, J. T.; Jensen, R. G. (1979)."Measurement of Ribulose 1,5-Bisphosphate from Spinach Chloroplasts".Plant Physiology.64 (5):876–879.doi:10.1104/pp.64.5.876.PMC 543382.PMID 16661073.
  1. ^Note that G3P is a 3-carbon sugar so its abundance should be twice that of the 6-carbon RuBP, after accounting for rates of enzymatic catalysis.
Retrieved from "https://en.wikipedia.org/w/index.php?title=Ribulose_1,5-bisphosphate&oldid=1322205095"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp