Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Rectangular function

From Wikipedia, the free encyclopedia
Function whose graph is 0, then 1, then 0 again, in an almost-everywhere continuous way
"Box function" redirects here. For the Conway box function, seeMinkowski's question-mark function § Conway box function.

Rectangular function with a = 1

Therectangular function (also known as therectangle function,rect function,Pi function,Heaviside Pi function,[1]gate function,unit pulse, or thenormalizedboxcar function) is defined as[2]

rect(ta)=Π(ta)={0,if |t|>a212,if |t|=a21,if |t|<a2.{\displaystyle \operatorname {rect} \left({\frac {t}{a}}\right)=\Pi \left({\frac {t}{a}}\right)=\left\{{\begin{array}{rl}0,&{\text{if }}|t|>{\frac {a}{2}}\\{\frac {1}{2}},&{\text{if }}|t|={\frac {a}{2}}\\1,&{\text{if }}|t|<{\frac {a}{2}}.\end{array}}\right.}

Alternative definitions of the function definerect(±12){\textstyle \operatorname {rect} \left(\pm {\frac {1}{2}}\right)} to be 0,[3] 1,[4][5] or undefined.

Its periodic version is called arectangular wave.

History

[edit]

Therect function has been introduced 1953 byWoodward[6] in "Probability and Information Theory, with Applications to Radar"[7] as an idealcutout operator, together with thesinc function[8][9] as an idealinterpolation operator, and their counter operations which aresampling (comb operator) andreplicating (rep operator), respectively.

Relation to the boxcar function

[edit]

The rectangular function is a special case of the more generalboxcar function:

rect(tXY)=H(t(XY/2))H(t(X+Y/2))=H(tX+Y/2)H(tXY/2){\displaystyle \operatorname {rect} \left({\frac {t-X}{Y}}\right)=H(t-(X-Y/2))-H(t-(X+Y/2))=H(t-X+Y/2)-H(t-X-Y/2)}

whereH(x){\displaystyle H(x)} is theHeaviside step function; the function is centered atX{\displaystyle X} and has durationY{\displaystyle Y}, fromXY/2{\displaystyle X-Y/2} toX+Y/2.{\displaystyle X+Y/2.}

Fourier transform of the rectangular function

[edit]
Plot of normalizedsinc(x){\displaystyle \operatorname {sinc} (x)} function (i.e.sinc(πx){\displaystyle \operatorname {sinc} (\pi x)}) with its spectral frequency components.

Theunitary Fourier transforms of the rectangular function are[2]rect(t)ei2πftdt=sin(πf)πf=sinc(πf)=sincπ(f),{\displaystyle \int _{-\infty }^{\infty }\operatorname {rect} (t)\cdot e^{-i2\pi ft}\,dt={\frac {\sin(\pi f)}{\pi f}}=\operatorname {sinc} (\pi f)=\operatorname {sinc} _{\pi }(f),}using ordinary frequencyf, wheresincπ{\displaystyle \operatorname {sinc} _{\pi }} is the normalized form[10] of thesinc function and12πrect(t)eiωtdt=12πsin(ω/2)ω/2=12πsinc(ω/2),{\displaystyle {\frac {1}{\sqrt {2\pi }}}\int _{-\infty }^{\infty }\operatorname {rect} (t)\cdot e^{-i\omega t}\,dt={\frac {1}{\sqrt {2\pi }}}\cdot {\frac {\sin \left(\omega /2\right)}{\omega /2}}={\frac {1}{\sqrt {2\pi }}}\cdot \operatorname {sinc} \left(\omega /2\right),}using angular frequencyω{\displaystyle \omega }, wheresinc{\displaystyle \operatorname {sinc} } is the unnormalized form of thesinc function.

Forrect(x/a){\displaystyle \operatorname {rect} (x/a)}, its Fourier transform isrect(ta)ei2πftdt=asin(πaf)πaf=a sincπ(af).{\displaystyle \int _{-\infty }^{\infty }\operatorname {rect} \left({\frac {t}{a}}\right)\cdot e^{-i2\pi ft}\,dt=a{\frac {\sin(\pi af)}{\pi af}}=a\ \operatorname {sinc} _{\pi }{(af)}.}

Relation to the triangular function

[edit]

We can define thetriangular function as theconvolution of two rectangular functions:

tri(t/T)=rect(2t/T)rect(2t/T).{\displaystyle \operatorname {tri(t/T)} =\operatorname {rect(2t/T)} *\operatorname {rect(2t/T)} .\,}

Use in probability

[edit]
Main article:Uniform distribution (continuous)

Viewing the rectangular function as aprobability density function, it is a special case of thecontinuous uniform distribution witha=1/2,b=1/2.{\displaystyle a=-1/2,b=1/2.} Thecharacteristic function is

φ(k)=sin(k/2)k/2,{\displaystyle \varphi (k)={\frac {\sin(k/2)}{k/2}},}

and itsmoment-generating function is

M(k)=sinh(k/2)k/2,{\displaystyle M(k)={\frac {\sinh(k/2)}{k/2}},}

wheresinh(t){\displaystyle \sinh(t)} is thehyperbolic sine function.

Rational approximation

[edit]

The pulse function may also be expressed as a limit of arational function:

Π(t)=limn,n(Z)1(2t)2n+1.{\displaystyle \Pi (t)=\lim _{n\rightarrow \infty ,n\in \mathbb {(} Z)}{\frac {1}{(2t)^{2n}+1}}.}

Demonstration of validity

[edit]

First, we consider the case where|t|<12.{\textstyle |t|<{\frac {1}{2}}.} Notice that the term(2t)2n{\textstyle (2t)^{2n}} is always positive for integern.{\displaystyle n.} However,2t<1{\displaystyle 2t<1} and hence(2t)2n{\textstyle (2t)^{2n}} approaches zero for largen.{\displaystyle n.}

It follows that:limn,n(Z)1(2t)2n+1=10+1=1,|t|<12.{\displaystyle \lim _{n\rightarrow \infty ,n\in \mathbb {(} Z)}{\frac {1}{(2t)^{2n}+1}}={\frac {1}{0+1}}=1,|t|<{\tfrac {1}{2}}.}

Second, we consider the case where|t|>12.{\textstyle |t|>{\frac {1}{2}}.} Notice that the term(2t)2n{\textstyle (2t)^{2n}} is always positive for integern.{\displaystyle n.} However,2t>1{\displaystyle 2t>1} and hence(2t)2n{\textstyle (2t)^{2n}} grows very large for largen.{\displaystyle n.}

It follows that:limn,n(Z)1(2t)2n+1=1++1=0,|t|>12.{\displaystyle \lim _{n\rightarrow \infty ,n\in \mathbb {(} Z)}{\frac {1}{(2t)^{2n}+1}}={\frac {1}{+\infty +1}}=0,|t|>{\tfrac {1}{2}}.}

Third, we consider the case where|t|=12.{\textstyle |t|={\frac {1}{2}}.} We may simply substitute in our equation:

limn,n(Z)1(2t)2n+1=limn,n(Z)112n+1=11+1=12.{\displaystyle \lim _{n\rightarrow \infty ,n\in \mathbb {(} Z)}{\frac {1}{(2t)^{2n}+1}}=\lim _{n\rightarrow \infty ,n\in \mathbb {(} Z)}{\frac {1}{1^{2n}+1}}={\frac {1}{1+1}}={\tfrac {1}{2}}.}

We see that it satisfies the definition of the pulse function. Therefore,

rect(t)=Π(t)=limn,n(Z)1(2t)2n+1={0if |t|>1212if |t|=121if |t|<12.{\displaystyle \operatorname {rect} (t)=\Pi (t)=\lim _{n\rightarrow \infty ,n\in \mathbb {(} Z)}{\frac {1}{(2t)^{2n}+1}}={\begin{cases}0&{\mbox{if }}|t|>{\frac {1}{2}}\\{\frac {1}{2}}&{\mbox{if }}|t|={\frac {1}{2}}\\1&{\mbox{if }}|t|<{\frac {1}{2}}.\\\end{cases}}}

Dirac delta function

[edit]

The rectangle function can be used to represent theDirac delta functionδ(x){\displaystyle \delta (x)}.[11] Specifically,δ(x)=lima01arect(xa).{\displaystyle \delta (x)=\lim _{a\to 0}{\frac {1}{a}}\operatorname {rect} \left({\frac {x}{a}}\right).}For a functiong(x){\displaystyle g(x)}, its average over the widtha{\displaystyle a} around 0 in the function domain is calculated as,

gavg(0)=1adx g(x)rect(xa).{\displaystyle g_{avg}(0)={\frac {1}{a}}\int \limits _{-\infty }^{\infty }dx\ g(x)\operatorname {rect} \left({\frac {x}{a}}\right).}To obtaing(0){\displaystyle g(0)}, the following limit is applied,

g(0)=lima01adx g(x)rect(xa){\displaystyle g(0)=\lim _{a\to 0}{\frac {1}{a}}\int \limits _{-\infty }^{\infty }dx\ g(x)\operatorname {rect} \left({\frac {x}{a}}\right)}and this can be written in terms of the Dirac delta function as,g(0)=dx g(x)δ(x).{\displaystyle g(0)=\int \limits _{-\infty }^{\infty }dx\ g(x)\delta (x).}The Fourier transform of the Dirac delta functionδ(t){\displaystyle \delta (t)} is

δ(f)=δ(t)ei2πftdt=lima01arect(ta)ei2πftdt=lima0sinc(af).{\displaystyle \delta (f)=\int _{-\infty }^{\infty }\delta (t)\cdot e^{-i2\pi ft}\,dt=\lim _{a\to 0}{\frac {1}{a}}\int _{-\infty }^{\infty }\operatorname {rect} \left({\frac {t}{a}}\right)\cdot e^{-i2\pi ft}\,dt=\lim _{a\to 0}\operatorname {sinc} {(af)}.}where thesinc function here is the normalized sinc function. Because the first zero of the sinc function is atf=1/a{\displaystyle f=1/a} anda{\displaystyle a} goes to infinity, the Fourier transform ofδ(t){\displaystyle \delta (t)} is

δ(f)=1,{\displaystyle \delta (f)=1,}means that the frequency spectrum of the Dirac delta function is infinitely broad. As a pulse is shorten in time, it is larger in spectrum.

See also

[edit]

References

[edit]
  1. ^Wolfram Research (2008)."HeavisidePi, Wolfram Language function". RetrievedOctober 11, 2022.
  2. ^abWeisstein, Eric W."Rectangle Function".MathWorld.
  3. ^Wang, Ruye (2012).Introduction to Orthogonal Transforms: With Applications in Data Processing and Analysis. Cambridge University Press. pp. 135–136.ISBN 9780521516884.
  4. ^Tang, K. T. (2007).Mathematical Methods for Engineers and Scientists: Fourier analysis, partial differential equations and variational models. Springer. p. 85.ISBN 9783540446958.
  5. ^Kumar, A. Anand (2011).Signals and Systems. PHI Learning Pvt. Ltd. pp. 258–260.ISBN 9788120343108.
  6. ^Klauder, John R (1960)."The Theory and Design of Chirp Radars".Bell System Technical Journal.39 (4):745–808.doi:10.1002/j.1538-7305.1960.tb03942.x.
  7. ^Woodward, Philipp M (1953).Probability and Information Theory, with Applications to Radar. Pergamon Press. p. 29.
  8. ^Higgins, John Rowland (1996).Sampling Theory in Fourier and Signal Analysis: Foundations. Oxford University Press Inc. p. 4.ISBN 0198596995.
  9. ^Zayed, Ahmed I (1996).Handbook of Function and Generalized Function Transformations. CRC Press. p. 507.ISBN 9780849380761.
  10. ^Wolfram MathWorld,https://mathworld.wolfram.com/SincFunction.html
  11. ^Khare, Kedar; Butola, Mansi; Rajora, Sunaina (2023). "Chapter 2.4 Sampling by Averaging, Distributions and Delta Function".Fourier Optics and Computational Imaging (2nd ed.). Springer. pp. 15–16.doi:10.1007/978-3-031-18353-9.ISBN 978-3-031-18353-9.
Retrieved from "https://en.wikipedia.org/w/index.php?title=Rectangular_function&oldid=1292793022"
Category:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp