Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Isotopes of radium

From Wikipedia, the free encyclopedia
(Redirected fromRadium-228)
Ra-226 nitrate (3x 1 mCi) - Photo by Dr Andrew R. Burgoyne - Oak Ridge National Laboratory
Ra-224 nitrate (21.4 mCi) - Photo by Dr Andrew R. Burgoyne - Oak Ridge National Laboratory

Isotopes ofradium (88Ra)
Main isotopes[1]Decay
abun­dancehalf-life(t1/2)modepro­duct
223Ratrace11.43 dα219Rn
224Ratrace3.6319 dα220Rn
225Ratrace14.9 dβ225Ac
α[2]221Rn
226Ratrace1599 yα222Rn
228Ratrace5.75 yβ228Ac

Radium (88Ra) has no stable or nearly stableisotopes, and thus astandard atomic weight cannot be given. The longest lived, and most common, isotope of radium is226Ra with a half-life of1600 years.226Ra occurs in thedecay chain of238U (often referred to as the radium series). Radium has 34 known isotopes from201Ra to234Ra.

In the early history of the study of radioactivity, the different naturalisotopes of radium were given different names, as it was not untilFrederick Soddy's scientific career in the early 1900s that the concept of isotopes was realized.[3] In this scheme,223Ra was named actinium X (AcX),224Ra thorium X (ThX),226Ra radium (Ra), and228Ra mesothorium 1 (MsTh1).[4] When it was realized that all of these are isotopes of the same element, many of these names fell out of use, and "radium" came to refer to all isotopes, not just226Ra,[5] though mesothorium 1 in particular was still used for some time, with a footnote explaining that it referred to228Ra.[6] Some of radium-226's decay products received historical names including "radium",[7] ranging from radium A to radium G, with the letter indicating approximately how far they were down the chain from their parent226Ra.[a]

In 2013 it was discovered that the nucleus of radium-224 is pear-shaped.[10] This was the first discovery of an asymmetrical nucleus.

List of isotopes

[edit]


Nuclide
[n 1]
Historic
name
ZNIsotopic mass(Da)[11]
[n 2][n 3]
Half-life[1]
Decay
mode
[1]
[n 4]
Daughter
isotope

[n 5]
Spin and
parity[1]
[n 6][n 7]
Isotopic
abundance
Excitation energy[n 7]
201Ra88113201.012815(22)20(30) msα197Rn(3/2−)
201mRa263(26) keV6(5) msα197Rn13/2+
202Ra88114202.009742(16)4.1(11) msα198Rn0+
203Ra88115203.009234(10)36(13) msα199Rn3/2−
203mRa246(14) keV25(5) msα199Rn13/2+
204Ra88116204.0065069(96)60(9) msα (99.7%)200Rn0+
205Ra88117205.006231(24)220(50) msα201Rn3/2−
205mRa263(25) keV180(50) msα201Rn13/2+
206Ra88118206.003828(19)0.24(2) sα202Rn0+
207Ra88119207.003772(63)1.38(18) sα (86%)203Rn5/2−#
β+ (14%)207Fr
207mRa560(60) keV57(8) msIT (85#%)207Ra13/2+
α (?%)203Rn
208Ra88120208.0018550(97)1.110(45) sα (87%)204Rn0+
β+ (13%)208Fr
208mRa2147.4(4) keV263(17) nsIT208Ra(8+)
209Ra88121209.0019949(62)4.71(8) sα (90%)205Rn5/2−
209mRa882.4(7) keV117(5) μsα (90%)205Rn13/2+
β+ (10%)209Fr
210Ra88122210.0004754(99)4.0(1) sα206Rn0+
210mRa2050.9(7) keV2.29(3) μsIT210Ra8+
211Ra88123211.0008930(53)12.6(12) sα207Rn5/2−
211mRa1198.1(8) keV9.5(3) μsIT211Ra13/2+
212Ra88124211.999787(11)13.0(2) sα (?%)208Rn0+
β+ (?%)212Fr
212m1Ra1958.4(20) keV9.3(9) μsIT212Ra8+
212m2Ra2613.3(20) keV0.85(13) μsIT212Ra11−
213Ra88125213.000371(11)2.73(5) minα (87%)209Rn1/2−
β+ (13%)213Fr
213mRa1768(4) keV2.20(5) msIT (99.4%)213Ra(17/2−)
α (0.6%)209Rn
214Ra88126214.0000996(56)2.437(16) sα (99.94%)210Rn0+
β+ (0.059%)214Fr
214m1Ra1819.7(18) keV118(7) nsIT214Ra6+
214m2Ra1865.2(18) keV67.3(15) μsIT (99.91%)214Ra8+
α (0.09%)210Rn
214m3Ra2683.2(18) keV295(7) nsIT214Ra11−
214m4Ra3478.4(18) keV279(4) nsIT214Ra14+
214m5Ra4146.8(18) keV225(4) nsIT214Ra17−
214m6Ra6577.0(18) keV128(4) nsIT214Ra(25−)
215Ra88127215.0027182(77)1.669(9) msα211Rn9/2+#
215m1Ra1877.8(3) keV7.31(13) μsIT215Ra(25/2+)
215m2Ra2246.9(4) keV1.39(7) μsIT215Ra(29/2−)
215m3Ra3807(50)# keV555(10) nsIT215Ra(43/2−)
216Ra88128216.0035335(86)172(7) nsα212Rn0+
EC (<1×10−8%)216Fr
217Ra88129217.0063227(76)1.95(12) μsα213Rn(9/2+)
218Ra88130218.007134(11)25.91(14) μsα214Rn0+
219Ra88131219.0100847(73)9(2) msα215Rn(7/2)+
219mRa16.7(8) keV10(3) nsα215Rn(11/2)+
220Ra88132220.0110275(82)18.1(12) msα216Rn0+
221Ra88133221.0139173(05)25(4) sα217Rn5/2+Trace[n 8]
CD (1.2×10−10%)[n 9]207Pb
14C
222Ra88134222.0153734(48)33.6(4) sα218Rn0+
CD (3.0×10−8%)208Pb
14C
223Ra[n 10]Actinium X88135223.0185006(22)11.4352(10) dα219Rn3/2+Trace[n 11]
CD (8.9×10−8%)209Pb
14C
224RaThorium X88136224.0202104(19)3.6316(14) dα220Rn0+Trace[n 12]
CD (4.0×10−9%)210Pb
14C
225Ra88137225.0236105(28)14.82(19) dβ225Ac1/2+Trace[n 13]
α (2.6×10−3%)[2]221Rn
226RaRadium[n 14]88138226.0254082(21)1600(7) yα[n 15]222Rn0+Trace[n 16]
CD (2.6×10−9%)212Pb
14C
227Ra88139227.0291762(21)42.2(5) minβ227Ac3/2+
228RaMesothorium 188140228.0310686(21)5.75(3) yβ228Ac0+Trace[n 12]
229Ra88141229.034957(17)4.0(2) minβ229Ac5/2+
230Ra88142230.037055(11)93(2) minβ230Ac0+
231Ra88143231.041027(12)104(1) sβ231Ac(5/2+)
231mRa66.21(9) keV~53 μsIT231Ra(1/2+)
232Ra88144232.0434753(98)4.0(3) minβ232Ac0+
233Ra88145233.0475946(92)30(5) sβ233Ac1/2+#
234Ra88146234.0503821(90)30(10) sβ234Ac0+
This table header & footer:
  1. ^mRa – Excitednuclear isomer.
  2. ^( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. ^# – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^Modes of decay:
    EC:Electron capture
    CD:Cluster decay
    IT:Isomeric transition
  5. ^Bold symbol as daughter – Daughter product is stable.
  6. ^( ) spin value – Indicates spin with weak assignment arguments.
  7. ^ab# – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  8. ^Intermediate decay product of237Np
  9. ^Lightest known nuclide to undergocluster decay
  10. ^Used fortreating bone cancer
  11. ^Intermediatedecay product of235U
  12. ^abIntermediate decay product of232Th
  13. ^Intermediate decay product of237Np
  14. ^Source of element's name
  15. ^Theoretically capable of ββ decay to226Th
  16. ^Intermediate decay product of238U

Actinides vs fission products

[edit]
Actinides and fission products by half-life
Actinides[12] bydecay chainHalf-life
range (a)
Fission products of235U byyield[13]
4n4n + 14n + 24n + 34.5–7%0.04–1.25%<0.001%
228Ra4–6 a155Euþ
248Bk[14]> 9 a
244Cmƒ241Puƒ250Cf227Ac10–29 a90Sr85Kr113mCdþ
232Uƒ238Puƒ243Cmƒ29–97 a137Cs151Smþ121mSn
249Cfƒ242mAmƒ141–351 a

No fission products have ahalf-life
in the range of 100 a–210 ka ...

241Amƒ251Cfƒ[15]430–900 a
226Ra247Bk1.3–1.6 ka
240Pu229Th246Cmƒ243Amƒ4.7–7.4 ka
245Cmƒ250Cm8.3–8.5 ka
239Puƒ24.1 ka
230Th231Pa32–76 ka
236Npƒ233Uƒ234U150–250 ka99Tc126Sn
248Cm242Pu327–375 ka79Se
1.33 Ma135Cs
237Npƒ1.61–6.5 Ma93Zr107Pd
236U247Cmƒ15–24 Ma129I
244Pu80 Ma

... nor beyond 15.7 Ma[16]

232Th238U235Uƒ№0.7–14.1 Ga

References

[edit]
  1. ^abcdKondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021)."The NUBASE2020 evaluation of nuclear properties"(PDF).Chinese Physics C.45 (3): 030001.doi:10.1088/1674-1137/abddae.
  2. ^abLiang, C. F.; Paris, P.; Sheline, R. K. (2000-09-19). "α decay of225Ra".Physical Review C.62 (4). American Physical Society (APS): 047303.Bibcode:2000PhRvC..62d7303L.doi:10.1103/physrevc.62.047303.ISSN 0556-2813.
  3. ^Nagel, Miriam C. (September 1982)."Frederick Soddy: From alchemy to isotopes".Journal of Chemical Education.59 (9): 739.Bibcode:1982JChEd..59..739N.doi:10.1021/ed059p739.ISSN 0021-9584.
  4. ^Kirby, H.W. & Salutsky, Murrell L. (December 1964).The Radiochemistry of Radium (Report). crediting UNT Libraries Government Documents Department. p. 3 – viaUniversity of North Texas, UNT Digital Library. Alternate source:https://sgp.fas.org/othergov/doe/lanl/lib-www/books/rc000041.pdf
  5. ^Giunta, Carmen J. (2017)."ISOTOPES: IDENTIFYING THE BREAKTHROUGH PUBLICATION (1)"(PDF).Bull. Hist. Chem.42 (2):103–111.
  6. ^Looney, William B. (1958)."Effects of Radium in Man".Science.127 (3299):630–633.Bibcode:1958Sci...127..630L.doi:10.1126/science.127.3299.630.ISSN 0036-8075.JSTOR 1755774.PMID 13529029.
  7. ^Mitchell, S. A."Is Radium in the Sun?".Popular Astronomy.21:321–331.Bibcode:1913PA.....21..321M.
  8. ^Kuhn, W. (1929). "LXVIII. Scattering of thorium C" γ-radiation by radium G and ordinary lead".The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science.8 (52): 628.doi:10.1080/14786441108564923.ISSN 1941-5982.
  9. ^Kinsey, R. R. (December 18, 1997),"The radioactive series of radium-226"(PDF),The NUDAT/PCNUDAT Program for Nuclear Data – via CERN
  10. ^Hills, Stephanie (8 May 2013)."First observations of short-lived pear-shaped atomic nuclei".CERN.
  11. ^Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*".Chinese Physics C.45 (3): 030003.doi:10.1088/1674-1137/abddaf.
  12. ^Plus radium (element 88). While actually a sub-actinide, it immediately precedes actinium (89) and follows a three-element gap of instability afterpolonium (84) where no nuclides have half-lives of at least four years (the longest-lived nuclide in the gap isradon-222 with a half life of less than fourdays). Radium's longest lived isotope, at 1,600 years, thus merits the element's inclusion here.
  13. ^Specifically fromthermal neutron fission of uranium-235, e.g. in a typicalnuclear reactor.
  14. ^Milsted, J.; Friedman, A. M.; Stevens, C. M. (1965). "The alpha half-life of berkelium-247; a new long-lived isomer of berkelium-248".Nuclear Physics.71 (2): 299.Bibcode:1965NucPh..71..299M.doi:10.1016/0029-5582(65)90719-4.
    "The isotopic analyses disclosed a species of mass 248 in constant abundance in three samples analysed over a period of about 10 months. This was ascribed to an isomer of Bk248 with a half-life greater than 9 [years]. No growth of Cf248 was detected, and a lower limit for the β half-life can be set at about 104 [years]. No alpha activity attributable to the new isomer has been detected; the alpha half-life is probably greater than 300 [years]."
  15. ^This is the heaviest nuclide with a half-life of at least four years before the "sea of instability".
  16. ^Excluding those "classically stable" nuclides with half-lives significantly in excess of232Th; e.g., while113mCd has a half-life of only fourteen years, that of113Cd is eightquadrillion years.

Notes

[edit]
  1. ^Radium emanation =222Rn,Ra A =218Po,Ra B =214Pb,Ra C =214Bi,Ra C1 =214Po,Ra C2 =210Tl,Ra D =210Pb,Ra E =210Bi,Ra F =210Po, andRa G =206Pb.[8][9]
Group12 3456789101112131415161718
PeriodHydrogen and
alkali metals
Alkaline
earth metals
Pnicto­gensChal­co­gensHalo­gensNoble gases
12
345678910
1112131415161718
192021222324252627282930313233343536
373839404142434445464748495051525354
55561 asterisk71727374757677787980818283848586
87881 asterisk103104105106107108109110111112113114115116117118
119120
1 asterisk5758596061626364656667686970 
1 asterisk8990919293949596979899100101102
Authority control databases: NationalEdit this at Wikidata
Retrieved from "https://en.wikipedia.org/w/index.php?title=Isotopes_of_radium&oldid=1278695512#Radium-228"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp