Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Qutrit

From Wikipedia, the free encyclopedia
Unit of quantum information
Units of
information
Information-theoretic
Data storage
Quantum information

Aqutrit (orquantum trit) is a unit ofquantum information that is realized by a 3-level quantum system, that may be in asuperposition of three mutually orthogonalquantum states.[1]

The qutrit is analogous to the classicalradix-3trit, just as thequbit, a quantum system described by a superposition of two orthogonal states, is analogous to the classical radix-2bit.

There is ongoing work to develop quantum computers using qutrits[2][3][4] andqudits in general.[5][6][7]

Representation

[edit]

A qutrit has three orthonormalbasis states orvectors, often denoted|0{\displaystyle |0\rangle },|1{\displaystyle |1\rangle }, and|2{\displaystyle |2\rangle } in Dirac orbra–ket notation.These are used to describe the qutrit as asuperposition state vector in the form of a linear combination of the three orthonormal basis states:

|ψ=α|0+β|1+γ|2{\displaystyle |\psi \rangle =\alpha |0\rangle +\beta |1\rangle +\gamma |2\rangle },

where the coefficients are complexprobability amplitudes, such that the sum of their squares is unity (normalization):

|α|2+|β|2+|γ|2=1{\displaystyle |\alpha |^{2}+|\beta |^{2}+|\gamma |^{2}=1\,}

Thequbit's orthonormal basis states{|0,|1}{\displaystyle \{|0\rangle ,|1\rangle \}} span the two-dimensional complexHilbert spaceH2{\displaystyle H_{2}}, corresponding to spin-up and spin-down of aspin-1/2 particle. Qutrits require a Hilbert space of higher dimension, namely the three-dimensionalH3{\displaystyle H_{3}} spanned by the qutrit's basis{|0,|1,|2}{\displaystyle \{|0\rangle ,|1\rangle ,|2\rangle \}},[8] which can be realized by a three-level quantum system.

Ann-qutritregister can represent 3n different states simultaneously, i.e., a superposition state vector in 3n-dimensional complex Hilbert space.[9]

Qutrits have several peculiar features when used for storing quantum information. For example, they are more robust todecoherence under certain environmental interactions.[10] In reality, manipulating qutrits directly might be tricky, and one way to do that is by using anentanglement with aqubit.[11]

Qutrit quantum gates

[edit]

Thequantum logic gates operating on single qutrits are3×3{\displaystyle 3\times 3}unitary matrices and gates that act onregisters ofn{\displaystyle n} qutrits are3n×3n{\displaystyle 3^{n}\times 3^{n}} unitary matrices (the elements of theunitary groups U(3) and U(3n) respectively).[12]

The rotation operator gates[a] forSU(3) areRot(Θ1,Θ2,,Θ8)=exp(ia=18Θaλa2){\displaystyle \operatorname {Rot} (\Theta _{1},\Theta _{2},\dots ,\Theta _{8})=\exp \left(-i\sum _{a=1}^{8}\Theta _{a}{\frac {\lambda _{a}}{2}}\right)}, whereλa{\displaystyle \lambda _{a}} is thea'thGell-Mann matrix, andΘa{\displaystyle \Theta _{a}} is areal value. TheLie algebra of thematrix exponential is providedhere. The same rotation operators are used forgluon interactions, where the three basis states are thethree colors(|0=red,|1=green,|2=blue{\displaystyle |0\rangle ={\text{red}},|1\rangle ={\text{green}},|2\rangle ={\text{blue}}}) of thestrong interaction.[13][14][b]

The global phase shift gate for the qutrit[c] isPh(δ)=[eiδ000eiδ000eiδ]=exp(iδI)=eiδI{\displaystyle \operatorname {Ph} (\delta )={\begin{bmatrix}e^{i\delta }&0&0\\0&e^{i\delta }&0\\0&0&e^{i\delta }\end{bmatrix}}=\exp \left(i\delta I\right)=e^{i\delta }I} where thephase factoreiδ{\displaystyle e^{i\delta }} is called theglobal phase.

This phase gate performs the mapping|Ψeiδ|Ψ{\displaystyle |\Psi \rangle \mapsto e^{i\delta }|\Psi \rangle } and together with the 8 rotation operators is capable of expressing any single-qutrit gate inU(3), as aseries circuit of at most 9 gates.

See also

[edit]

Notes

[edit]
  1. ^This can be compared with the threerotation operator gates for qubits. We get eightlinearly independent rotation operators by selecting appropriateΘ{\displaystyle \Theta }. For example, we get the 1st rotation operator for SU(3) by settingΘ10{\displaystyle \Theta _{1}\neq 0} and all others to zero.
  2. ^Note:U(3)=U(1)SU(3).{\displaystyle U(3)=U(1)\oplus SU(3).}Quarks and gluons havecolor charge interactions in SU(3), not U(3), meaning there are no pure phase shift rotations allowed for gluons. If such rotations were allowed, it would mean that there would be a 9th gluon.[15]
  3. ^Comparable with theglobal phase shift gate for qubits.

References

[edit]
  1. ^Nisbet-Jones, Peter B. R.; Dilley, Jerome; Holleczek, Annemarie; Barter, Oliver; Kuhn, Axel (2013)."Photonic qubits, qutrits and ququads accurately prepared and delivered on demand".New Journal of Physics.15 (5) 053007.arXiv:1203.5614.Bibcode:2013NJPh...15e3007N.doi:10.1088/1367-2630/15/5/053007.ISSN 1367-2630.S2CID 110606655.
  2. ^Yurtalan, M. A.; Shi, J.; Kononenko, M.; Lupascu, A.; Ashhab, S. (2020-10-27)."Implementation of a Walsh-Hadamard Gate in a Superconducting Qutrit".Physical Review Letters.125 (18) 180504.arXiv:2003.04879.Bibcode:2020PhRvL.125r0504Y.doi:10.1103/PhysRevLett.125.180504.PMID 33196217.S2CID 128064435.
  3. ^Morvan, A.; Ramasesh, V. V.; Blok, M. S.; Kreikebaum, J. M.; O'Brien, K.; Chen, L.; Mitchell, B. K.; Naik, R. K.; Santiago, D. I.; Siddiqi, I. (2021-05-27)."Qutrit Randomized Benchmarking".Physical Review Letters.126 (21) 210504.arXiv:2008.09134.Bibcode:2021PhRvL.126u0504M.doi:10.1103/PhysRevLett.126.210504.hdl:1721.1/143809.OSTI 1818119.PMID 34114846.S2CID 221246177.
  4. ^Goss, Noah; Morvan, Alexis; Marinelli, Brian; Mitchell, Bradley K.; Nguyen, Long B.; Naik, Ravi K.; Chen, Larry; Jünger, Christian; Kreikebaum, John Mark; Santiago, David I.; Wallman, Joel J.; Siddiqi, Irfan (2022-12-05)."High-fidelity qutrit entangling gates for superconducting circuits".Nature Communications.13 (1): 7481.arXiv:2206.07216.Bibcode:2022NatCo..13.7481G.doi:10.1038/s41467-022-34851-z.ISSN 2041-1723.PMC 9722686.PMID 36470858.
  5. ^"Qudits: The Real Future of Quantum Computing?".IEEE Spectrum. 28 June 2017. Retrieved2021-05-24.
  6. ^Fischer, Laurin E.; Chiesa, Alessandro; Tacchino, Francesco; Egger, Daniel J.; Carretta, Stefano; Tavernelli, Ivano (2023-08-28)."Universal Qudit Gate Synthesis for Transmons".PRX Quantum.4 (3) 030327.arXiv:2212.04496.Bibcode:2023PRXQ....4c0327F.doi:10.1103/PRXQuantum.4.030327.S2CID 254408561.
  7. ^Nguyen, Long B.; Goss, Noah; Siva, Karthik; Kim, Yosep; Younis, Ed; Qing, Bingcheng; Hashim, Akel; Santiago, David I.; Siddiqi, Irfan (2024)."Empowering a qudit-based quantum processor by traversing the dual bosonic ladder".Nature Communications.15 (1): 7117.arXiv:2312.17741.Bibcode:2024NatCo..15.7117N.doi:10.1038/s41467-024-51434-2.PMC 11333499.PMID 39160166.
  8. ^Byrd, Mark (1998). "Differential geometry on SU(3) with applications to three state systems".Journal of Mathematical Physics.39 (11):6125–6136.arXiv:math-ph/9807032.Bibcode:1998JMP....39.6125B.doi:10.1063/1.532618.ISSN 0022-2488.S2CID 17645992.
  9. ^Caves, Carlton M.; Milburn, Gerard J. (2000). "Qutrit entanglement".Optics Communications.179 (1–6):439–446.arXiv:quant-ph/9910001.Bibcode:2000OptCo.179..439C.doi:10.1016/s0030-4018(99)00693-8.ISSN 0030-4018.S2CID 27185877.
  10. ^Melikidze, A.; Dobrovitski, V. V.; De Raedt, H. A.; Katsnelson, M. I.; Harmon, B. N. (2004). "Parity effects in spin decoherence".Physical Review B.70 (1) 014435.arXiv:quant-ph/0212097.Bibcode:2004PhRvB..70a4435M.doi:10.1103/PhysRevB.70.014435.S2CID 56567962.
  11. ^B. P. Lanyon,1 T. J. Weinhold, N. K. Langford, J. L. O'Brien, K. J. Resch, A. Gilchrist, and A. G. White,Manipulating Biphotonic Qutrits, Phys. Rev. Lett.100, 060504 (2008) (link)
  12. ^Colin P. Williams (2011).Explorations in Quantum Computing.Springer. pp. 22–23.ISBN 978-1-84628-887-6.
  13. ^David J. Griffiths (2008).Introduction to Elementary Particles (2nd ed.).John Wiley & Sons. pp. 283–288,366–369.ISBN 978-3-527-40601-2.
  14. ^Stefan Scherer; Matthias R. Schindler (31 May 2005). "A Chiral Perturbation Theory Primer". p. 1–2.arXiv:hep-ph/0505265.
  15. ^Ethan Siegel (Nov 18, 2020)."Why Are There Only 8 Gluons?".Forbes.

External links

[edit]
Look upqutrit in Wiktionary, the free dictionary.


General
Theorems
Quantum
communication
Quantum cryptography
Quantum algorithms
Quantum
complexity theory
Quantum
processor benchmarks
Quantum
computing models
Quantum
error correction
Physical
implementations
Quantum optics
Ultracold atoms
Spin-based
Superconducting
Quantum
programming
Retrieved from "https://en.wikipedia.org/w/index.php?title=Qutrit&oldid=1328717519"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp