Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Quasi-complete space

From Wikipedia, the free encyclopedia
(Redirected fromQuasi-complete)
A topological vector space in which every closed and bounded subset is complete

Infunctional analysis, atopological vector space (TVS) is said to bequasi-complete orboundedly complete[1] if everyclosed andbounded subset iscomplete.[2] This concept is of considerable importance for non-metrizable TVSs.[2]

Properties

[edit]

Examples and sufficient conditions

[edit]

Every complete TVS is quasi-complete.[7] The product of any collection of quasi-complete spaces is again quasi-complete.[2] The projective limit of any collection of quasi-complete spaces is again quasi-complete.[8] Everysemi-reflexive space is quasi-complete.[9]

The quotient of a quasi-complete space by a closed vector subspace mayfail to be quasi-complete.

Counter-examples

[edit]

There exists anLB-space that is not quasi-complete.[10]

See also

[edit]

References

[edit]
  1. ^Wilansky 2013, p. 73.
  2. ^abcdeSchaefer & Wolff 1999, p. 27.
  3. ^Schaefer & Wolff 1999, p. 201.
  4. ^Schaefer & Wolff 1999, p. 110.
  5. ^abSchaefer & Wolff 1999, p. 142.
  6. ^Trèves 2006, p. 520.
  7. ^Narici & Beckenstein 2011, pp. 156–175.
  8. ^Schaefer & Wolff 1999, p. 52.
  9. ^Schaefer & Wolff 1999, p. 144.
  10. ^Khaleelulla 1982, pp. 28–63.

Bibliography

[edit]
Basic concepts
Main results
Maps
Types of sets
Set operations
Types of TVSs
Retrieved from "https://en.wikipedia.org/w/index.php?title=Quasi-complete_space&oldid=1119699808"
Category:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp