A topological vector space in which every closed and bounded subset is complete
Infunctional analysis , atopological vector space (TVS) is said to bequasi-complete orboundedly complete [ 1] if everyclosed andbounded subset iscomplete .[ 2] This concept is of considerable importance for non-metrizable TVSs .[ 2]
Examples and sufficient conditions [ edit ] Every complete TVS is quasi-complete.[ 7] The product of any collection of quasi-complete spaces is again quasi-complete.[ 2] The projective limit of any collection of quasi-complete spaces is again quasi-complete.[ 8] Everysemi-reflexive space is quasi-complete.[ 9]
The quotient of a quasi-complete space by a closed vector subspace mayfail to be quasi-complete.
There exists anLB-space that is not quasi-complete.[ 10]
^ Wilansky 2013 , p. 73.^a b c d e Schaefer & Wolff 1999 , p. 27.^ Schaefer & Wolff 1999 , p. 201.^ Schaefer & Wolff 1999 , p. 110.^a b Schaefer & Wolff 1999 , p. 142.^ Trèves 2006 , p. 520.^ Narici & Beckenstein 2011 , pp. 156–175.^ Schaefer & Wolff 1999 , p. 52.^ Schaefer & Wolff 1999 , p. 144.^ Khaleelulla 1982 , pp. 28–63.Khaleelulla, S. M. (1982).Counterexamples in Topological Vector Spaces .Lecture Notes in Mathematics . Vol. 936. Berlin, Heidelberg, New York:Springer-Verlag .ISBN 978-3-540-11565-6 .OCLC 8588370 . Narici, Lawrence; Beckenstein, Edward (2011).Topological Vector Spaces . Pure and applied mathematics (Second ed.). Boca Raton, FL: CRC Press.ISBN 978-1584888666 .OCLC 144216834 . Schaefer, Helmut H. ; Wolff, Manfred P. (1999).Topological Vector Spaces .GTM . Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer.ISBN 978-1-4612-7155-0 .OCLC 840278135 .Trèves, François (2006) [1967].Topological Vector Spaces, Distributions and Kernels . Mineola, N.Y.: Dover Publications.ISBN 978-0-486-45352-1 .OCLC 853623322 .Wilansky, Albert (2013).Modern Methods in Topological Vector Spaces . Mineola, New York: Dover Publications, Inc.ISBN 978-0-486-49353-4 .OCLC 849801114 .Wong, Yau-Chuen (1979).Schwartz Spaces, Nuclear Spaces, and Tensor Products .Lecture Notes in Mathematics . Vol. 726. Berlin New York:Springer-Verlag .ISBN 978-3-540-09513-2 .OCLC 5126158 .
Basic concepts Main results Maps Types of sets Set operations Types of TVSs