Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Quantum phase estimation algorithm

From Wikipedia, the free encyclopedia
Quantum algorithm for eigenvalue estimation

Inquantum computing, thequantum phase estimation algorithm is aquantum algorithm to estimate the phase corresponding to an eigenvalue of a givenunitary operator. Because the eigenvalues of a unitary operator always haveunit modulus, they are characterized by their phase, and therefore the algorithm can be equivalently described as retrieving either the phase or the eigenvalue itself. The algorithm was initially introduced byAlexei Kitaev in 1995.[1][2]: 246 

Phase estimation is frequently used as a subroutine in other quantum algorithms, such asShor's algorithm,[2]: 131  thequantum algorithm for linear systems of equations, and thequantum counting algorithm.

Overview of the algorithm

[edit]

The algorithm operates on two sets of qubits, referred to in this context asregisters. The two registers containn{\displaystyle n} andm{\displaystyle m} qubits, respectively. LetU{\displaystyle U} be aunitary operator acting on them{\displaystyle m}-qubit register. The eigenvalues of a unitary operator have unit modulus, and are therefore characterized by their phase. Thus if|ψ{\displaystyle |\psi \rangle } is aneigenvector ofU{\displaystyle U}, thenU|ψ=e2πiθ|ψ{\displaystyle U|\psi \rangle =e^{2\pi i\theta }\left|\psi \right\rangle } for someθR{\displaystyle \theta \in \mathbb {R} }. Due to the periodicity of the complex exponential, we can always assume0θ<1{\displaystyle 0\leq \theta <1}.

The goal is producing a good approximation forθ{\displaystyle \theta } with a small number of gates and a high probability of success. Thequantum phase estimation algorithm achieves this assuming oracular access toU{\displaystyle U}, and having|ψ{\displaystyle |\psi \rangle } available as aquantum state. This means that when discussing the efficiency of the algorithm we only worry about the number of timesU{\displaystyle U} needs to be used, but not about the cost of implementingU{\displaystyle U} itself.

More precisely, the algorithm returnswith high probability an approximation forθ{\displaystyle \theta }, within additive errorε{\displaystyle \varepsilon }, usingn=O(log(1/ε)){\displaystyle n=O(\log(1/\varepsilon ))} qubits in the first register, andO(1/ε){\displaystyle O(1/\varepsilon )}controlled-U operations. Furthermore, we can improve the success probability to1Δ{\displaystyle 1-\Delta } for anyΔ>0{\displaystyle \Delta >0} by using a total ofO(log(1/Δ)/ε){\displaystyle O(\log(1/\Delta )/\varepsilon )} uses of controlled-U, and this is optimal.[3]

Detailed description of the algorithm

[edit]
The circuit for quantum phase estimation.

State preparation

[edit]

The initial state of the system is:

|Ψ0=|0n|ψ,{\displaystyle |\Psi _{0}\rangle =|0\rangle ^{\otimes n}|\psi \rangle ,}

where|ψ{\displaystyle |\psi \rangle } is them{\displaystyle m}-qubit state that evolves throughU{\displaystyle U}. We first apply then-qubit Hadamard gate operationHn{\displaystyle H^{\otimes n}} on the first register, which produces the state:|Ψ1=(HnIm)|Ψ0=12n2(|0+|1)n|ψ=12n/2j=02n1|j|ψ.{\displaystyle |\Psi _{1}\rangle =(H^{\otimes n}\otimes I_{m})|\Psi _{0}\rangle ={\frac {1}{2^{\frac {n}{2}}}}(|0\rangle +|1\rangle )^{\otimes n}|\psi \rangle ={\frac {1}{2^{n/2}}}\sum _{j=0}^{2^{n}-1}|j\rangle |\psi \rangle .}Note that here we are switching between binary andn{\displaystyle n}-ary representation for then{\displaystyle n}-qubit register: the ket|j{\displaystyle |j\rangle } on the right-hand side is shorthand for then{\displaystyle n}-qubit state|j=0n1|j{\displaystyle |j\rangle \equiv \bigotimes _{\ell =0}^{n-1}|j_{\ell }\rangle }, wherej==0n1j2{\displaystyle j=\sum _{\ell =0}^{n-1}j_{\ell }2^{\ell }} is the binary decomposition ofj{\displaystyle j}.

Controlled-U operations

[edit]

This state|Ψ1{\displaystyle |\Psi _{1}\rangle } is then evolved through the controlled-unitary evolutionUC{\displaystyle U_{C}} whose action can be written asUC(|k|ψ)=|k(Uk|ψ),{\displaystyle U_{C}(|k\rangle \otimes |\psi \rangle )=|k\rangle \otimes (U^{k}|\psi \rangle ),} for allk=0,...,2n1{\displaystyle k=0,...,2^{n}-1}. This evolution can also be written concisely asUC=k=02n1|kk|Uk,{\displaystyle U_{C}=\sum _{k=0}^{2^{n}-1}|k\rangle \!\langle k|\otimes U^{k},} which highlights its controlled nature: it appliesUk{\displaystyle U^{k}} to the second register conditionally to the first register being|k{\displaystyle |k\rangle }. Remembering the eigenvalue condition holding for|ψ{\displaystyle |\psi \rangle }, applyingUC{\displaystyle U_{C}} to|Ψ1{\displaystyle |\Psi _{1}\rangle } thus gives|Ψ2UC|Ψ1=(12n/2k=02n1e2πiθk|k)|ψ,{\displaystyle |\Psi _{2}\rangle \equiv U_{C}|\Psi _{1}\rangle =\left({\frac {1}{2^{n/2}}}\sum _{k=0}^{2^{n}-1}e^{2\pi i\theta k}|k\rangle \right)\otimes |\psi \rangle ,} where we usedUk|ψ=e2πikθ|ψ{\displaystyle U^{k}|\psi \rangle =e^{2\pi ik\theta }|\psi \rangle }.

To show thatUC{\displaystyle U_{C}} can also be implemented efficiently, observe that we can writeUC==0n1C(U2){\displaystyle U_{C}=\prod _{\ell =0}^{n-1}C_{\ell }(U^{2^{\ell }})}, whereC(U2){\displaystyle C_{\ell }(U^{2^{\ell }})} denotes the operation of applyingU2{\displaystyle U^{2^{\ell }}} to the second register conditionally to the{\displaystyle \ell }-th qubit of the first register being|1{\displaystyle |1\rangle }. Formally, these gates can be characterized by their action asC(Uk)(|j|ψ)=|j(Ujk|ψ).{\displaystyle C_{\ell }(U^{k})(|j\rangle \otimes |\psi \rangle )=|j\rangle \otimes (U^{j_{\ell }k}|\psi \rangle ).}This equation can be interpreted as saying that the state is left unchanged whenj=0{\displaystyle j_{\ell }=0}, that is, when the{\displaystyle \ell }-th qubit is|0{\displaystyle |0\rangle }, while the gateUk{\displaystyle U^{k}} is applied to the second register when the{\displaystyle \ell }-th qubit is|1{\displaystyle |1\rangle }. The composition of these controlled-gates thus gives=0n1C(U2)(|j|ψ)=|j(U=0n1j2|ψ)=UC,{\displaystyle \prod _{\ell =0}^{n-1}C_{\ell }(U^{2^{\ell }})(|j\rangle \otimes |\psi \rangle )=|j\rangle \otimes \left(U^{\sum _{\ell =0}^{n-1}j_{\ell }2^{\ell }}|\psi \rangle \right)=U_{C},} with the last step directly following from the binary decompositionj==0n1j2{\displaystyle j=\sum _{\ell =0}^{n-1}j_{\ell }2^{\ell }}.

From this point onwards, the second register is left untouched, and thus it is convenient to write|Ψ2=|Ψ~2|ψ{\displaystyle |\Psi _{2}\rangle =|{\tilde {\Psi }}_{2}\rangle \otimes |\psi \rangle }, with|Ψ~2{\displaystyle |{\tilde {\Psi }}_{2}\rangle } the state of then{\displaystyle n}-qubit register, which is the only one we need to consider for the rest of the algorithm.

Apply inverse quantum Fourier transform

[edit]

The final part of the circuit involves applying the inversequantum Fourier transform (QFT)QFT{\displaystyle {\mathcal {QFT}}} on the first register of|Ψ2{\displaystyle |\Psi _{2}\rangle }:|Ψ~3=QFT2n1|Ψ~2.{\displaystyle |{\tilde {\Psi }}_{3}\rangle ={\mathcal {QFT}}_{2^{n}}^{-1}|{\tilde {\Psi }}_{2}\rangle .}The QFT and its inverse are characterized by their action on basis states asQFTN|k=N1/2j=0N1e2πiNjk|j,QFTN1|k=N1/2j=0N1e2πiNjk|j.{\displaystyle {\begin{aligned}{\mathcal {QFT}}_{N}|k\rangle &=N^{-1/2}\sum _{j=0}^{N-1}e^{{\frac {2\pi i}{N}}jk}|j\rangle ,\\{\mathcal {QFT}}_{N}^{-1}|k\rangle &=N^{-1/2}\sum _{j=0}^{N-1}e^{-{\frac {2\pi i}{N}}jk}|j\rangle .\end{aligned}}} It follows that

|Ψ~3=12n2k=02n1e2πiθk(12n2x=02n1e2πikx2n|x)=12nx=02n1k=02n1e2πik2n(x2nθ)|x.{\displaystyle |{\tilde {\Psi }}_{3}\rangle ={\frac {1}{2^{\frac {n}{2}}}}\sum _{k=0}^{2^{n}-1}e^{2\pi i\theta k}\left({\frac {1}{2^{\frac {n}{2}}}}\sum _{x=0}^{2^{n}-1}e^{\frac {-2\pi ikx}{2^{n}}}|x\rangle \right)={\frac {1}{2^{n}}}\sum _{x=0}^{2^{n}-1}\sum _{k=0}^{2^{n}-1}e^{-{\frac {2\pi ik}{2^{n}}}\left(x-2^{n}\theta \right)}|x\rangle .}

Decomposing the state in the computational basis as|Ψ~3=x=02n1cx|x,{\textstyle |{\tilde {\Psi }}_{3}\rangle =\sum _{x=0}^{2^{n}-1}c_{x}|x\rangle ,} the coefficients thus equalcx12nk=02n1e2πik2n(x2nθ)=12nk=02n1e2πik2n(xa)e2πiδk,{\displaystyle c_{x}\equiv {\frac {1}{2^{n}}}\sum _{k=0}^{2^{n}-1}e^{-{\frac {2\pi ik}{2^{n}}}(x-2^{n}\theta )}={\frac {1}{2^{n}}}\sum _{k=0}^{2^{n}-1}e^{-{\frac {2\pi ik}{2^{n}}}\left(x-a\right)}e^{2\pi i\delta k},}where we wrote2nθ=a+2nδ,{\displaystyle 2^{n}\theta =a+2^{n}\delta ,} witha{\displaystyle a} is the nearest integer to2nθ{\displaystyle 2^{n}\theta }. The difference2nδ{\displaystyle 2^{n}\delta } must by definition satisfy0|2nδ|12{\displaystyle 0\leqslant |2^{n}\delta |\leqslant {\tfrac {1}{2}}}. This amounts to approximating the value ofθ[0,1]{\displaystyle \theta \in [0,1]} by rounding2nθ{\displaystyle 2^{n}\theta } to the nearest integer.

Measurement

[edit]

The final step involves performing ameasurement in the computational basis on the first register. This yields the outcome|y{\displaystyle |y\rangle } with probabilityPr(y)=|cy|2=|12nk=02n1e2πik2n(ya)e2πiδk|2.{\displaystyle \Pr(y)=|c_{y}|^{2}=\left|{\frac {1}{2^{n}}}\sum _{k=0}^{2^{n}-1}e^{{\frac {-2\pi ik}{2^{n}}}(y-a)}e^{2\pi i\delta k}\right|^{2}.} It follows thatPr(a)=1{\displaystyle \operatorname {Pr} (a)=1} ifδ=0{\displaystyle \delta =0}, that is, whenθ{\displaystyle \theta } can be written asθ=a/2n{\displaystyle \theta =a/2^{n}}, one always finds the outcomey=a{\displaystyle y=a}. On the other hand, ifδ0{\displaystyle \delta \neq 0}, the probability readsPr(a)=122n|k=02n1e2πiδk|2=122n|1e2πi2nδ1e2πiδ|2.{\displaystyle \operatorname {Pr} (a)={\frac {1}{2^{2n}}}\left|\sum _{k=0}^{2^{n}-1}e^{2\pi i\delta k}\right|^{2}={\frac {1}{2^{2n}}}\left|{\frac {1-{e^{2\pi i2^{n}\delta }}}{1-{e^{2\pi i\delta }}}}\right|^{2}.} From this expression we can see thatPr(a)4π20.405{\displaystyle \Pr(a)\geqslant {\frac {4}{\pi ^{2}}}\approx 0.405} whenδ0{\displaystyle \delta \neq 0}. To see this, we observe that from the definition ofδ{\displaystyle \delta } we have the inequality|δ|12n+1{\displaystyle |\delta |\leqslant {\tfrac {1}{2^{n+1}}}}, and thus:[4]: 157 [5]: 348 Pr(a)=122n|1e2πi2nδ1e2πiδ|2for δ0=122n|2sin(π2nδ)2sin(πδ)|2|1e2ix|2=4|sin(x)|2=122n|sin(π2nδ)|2|sin(πδ)|2122n|sin(π2nδ)|2|πδ|2|sin(πδ)||πδ|122n|22nδ|2|πδ|2|22nδ||sin(π2nδ)| for |δ|12n+14π2.{\displaystyle {\begin{aligned}\Pr(a)&={\frac {1}{2^{2n}}}\left|{\frac {1-{e^{2\pi i2^{n}\delta }}}{1-{e^{2\pi i\delta }}}}\right|^{2}&&{\text{for }}\delta \neq 0\\&={\frac {1}{2^{2n}}}\left|{\frac {2\sin \left(\pi 2^{n}\delta \right)}{2\sin(\pi \delta )}}\right|^{2}&&\left|1-e^{2ix}\right|^{2}=4\left|\sin(x)\right|^{2}\\&={\frac {1}{2^{2n}}}{\frac {\left|\sin \left(\pi 2^{n}\delta \right)\right|^{2}}{|\sin(\pi \delta )|^{2}}}\\&\geqslant {\frac {1}{2^{2n}}}{\frac {\left|\sin \left(\pi 2^{n}\delta \right)\right|^{2}}{|\pi \delta |^{2}}}&&|\sin(\pi \delta )|\leqslant |\pi \delta |\\&\geqslant {\frac {1}{2^{2n}}}{\frac {|2\cdot 2^{n}\delta |^{2}}{|\pi \delta |^{2}}}&&|2\cdot 2^{n}\delta |\leqslant |\sin(\pi 2^{n}\delta )|{\text{ for }}|\delta |\leqslant {\frac {1}{2^{n+1}}}\\&\geqslant {\frac {4}{\pi ^{2}}}.\end{aligned}}}

We conclude that the algorithm provides the bestn{\displaystyle n}-bit estimate (i.e., one that is within1/2n{\displaystyle 1/2^{n}} of the correct answer) ofθ{\displaystyle \theta } with probability at least4/π2{\displaystyle 4/\pi ^{2}}. By adding a number of extra qubits on the order ofO(log(1/ϵ)){\displaystyle O(\log(1/\epsilon ))} and truncating the extra qubits the probability can increase to1ϵ{\displaystyle 1-\epsilon }.[5]

Toy examples

[edit]

Consider the simplest possible instance of the algorithm, where onlyn=1{\displaystyle n=1} qubit, on top of the qubits required to encode|ψ{\displaystyle |\psi \rangle }, is involved. Suppose the eigenvalue of|ψ{\displaystyle |\psi \rangle } readsλ=e2πiθ{\displaystyle \lambda =e^{2\pi i\theta }},θ[0,1){\displaystyle \theta \in [0,1)}. The first part of the algorithm generates the one-qubit state|ϕ12(|0+λ|1){\textstyle |\phi \rangle \equiv {\frac {1}{\sqrt {2}}}(|0\rangle +\lambda |1\rangle )}. Applying the inverse QFT amounts in this case to applying aHadamard gate. The final outcome probabilities are thusp±=|±|ϕ|2{\displaystyle p_{\pm }=|\langle \pm |\phi \rangle |^{2}} where|±12(|0±|1){\textstyle |\pm \rangle \equiv {\frac {1}{\sqrt {2}}}(|0\rangle \pm |1\rangle )}, or more explicitly,p±=|1±λ|24=1±cos(2πθ)2.{\displaystyle p_{\pm }={\frac {|1\pm \lambda |^{2}}{4}}={\frac {1\pm \cos(2\pi \theta )}{2}}.} Supposeλ=1{\displaystyle \lambda =1}, meaning|ϕ=|+{\displaystyle |\phi \rangle =|+\rangle }. Thenp+=1{\displaystyle p_{+}=1},p=0{\displaystyle p_{-}=0}, and we recover deterministically the precise value ofλ{\displaystyle \lambda } from the measurement outcomes. The same applies ifλ=1{\displaystyle \lambda =-1}.

If on the other handλ=e2πi/3{\displaystyle \lambda =e^{2\pi i/3}}, thenp±=[1±cos(2π/3)]/2{\displaystyle p_{\pm }=[1\pm \cos(2\pi /3)]/2}, that is,p+=1/4{\displaystyle p_{+}=1/4} andp=3/4{\displaystyle p_{-}=3/4}. In this case the result is not deterministic, but we still find the outcome|{\displaystyle |-\rangle } as more likely, compatibly with the fact that2/3{\displaystyle 2/3} is closer to 1 than to 0.

More generally, ifλ=e2πiθ{\displaystyle \lambda =e^{2\pi i\theta }}, thenp+1/2{\displaystyle p_{+}\geq 1/2} if and only if|θ|1/4{\displaystyle |\theta |\leq 1/4}. This is consistent with the results above because in the casesλ=±1{\displaystyle \lambda =\pm 1}, corresponding toθ=0,1/2{\displaystyle \theta =0,1/2}, the phase is retrieved deterministically, and the other phases are retrieved with higher accuracy the closer they are to these two.

See also

[edit]

References

[edit]
  1. ^Kitaev, A. Yu (1995-11-20). "Quantum measurements and the Abelian Stabilizer Problem".arXiv:quant-ph/9511026.
  2. ^abNielsen, Michael A. & Isaac L. Chuang (2001).Quantum computation and quantum information (Repr. ed.). Cambridge [u.a.]: Cambridge Univ. Press.ISBN 978-0521635035.
  3. ^Mande, Nikhil S.; Ronald de Wolf (2023). "Tight Bounds for Quantum Phase Estimation and Related Problems".arXiv:2305.04908 [quant-ph].
  4. ^Benenti, Guiliano; Casati, Giulio; Strini, Giuliano (2004).Principles of quantum computation and information (Reprinted. ed.). New Jersey [u.a.]: World Scientific.ISBN 978-9812388582.
  5. ^abCleve, R.; Ekert, A.; Macchiavello, C.; Mosca, M. (8 January 1998). "Quantum algorithms revisited".Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.454 (1969):339–354.arXiv:quant-ph/9708016.Bibcode:1998RSPSA.454..339C.doi:10.1098/rspa.1998.0164.S2CID 16128238.
General
Theorems
Quantum
communication
Quantum cryptography
Quantum algorithms
Quantum
complexity theory
Quantum
processor benchmarks
Quantum
computing models
Quantum
error correction
Physical
implementations
Quantum optics
Ultracold atoms
Spin-based
Superconducting
Quantum
programming
Retrieved from "https://en.wikipedia.org/w/index.php?title=Quantum_phase_estimation_algorithm&oldid=1314314698"
Category:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp