Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Quantifier rank

From Wikipedia, the free encyclopedia
Depth of nesting of quantifiers in a formula
This article includes alist of references,related reading, orexternal links,but its sources remain unclear because it lacksinline citations. Please helpimprove this article byintroducing more precise citations.(September 2025) (Learn how and when to remove this message)

Inmathematical logic, thequantifier rank of aformula is the depth of nesting of itsquantifiers. It plays an essential role inmodel theory.

The quantifier rank is a property of the formula itself (i.e. the expression in a language). Thus twologically equivalent formulae can have different quantifier ranks, when they express the same thing in different ways.

Definition

[edit]

In first-order logic

[edit]

Letφ{\displaystyle \varphi } be afirst-order formula. The quantifier rank ofφ{\displaystyle \varphi }, writtenqr(φ){\displaystyle \operatorname {qr} (\varphi )}, is defined as:

Remarks

In higher-order logic

[edit]

Forfixed-point logic, with a least fixed-point operatorLFP{\displaystyle \operatorname {LFP} }:qr([LFPϕ]y)=1+qr(ϕ){\displaystyle \operatorname {qr} ([\operatorname {LFP} _{\phi }]y)=1+\operatorname {qr} (\phi )}.

Examples

[edit]
  • A sentence of quantifier rank 2:
xyR(x,y){\displaystyle \forall x\exists yR(x,y)}
  • A formula of quantifier rank 1:
xR(y,x)xR(x,y){\displaystyle \forall xR(y,x)\wedge \exists xR(x,y)}
  • A formula of quantifier rank 0:
R(x,y)xy{\displaystyle R(x,y)\wedge x\neq y}
xyz((xyxRy)(xzzRx)){\displaystyle \forall x\exists y\exists z((x\neq y\wedge xRy)\wedge (x\neq z\wedge zRx))}
  • A sentence, equivalent to the previous, although of quantifier rank 2:
x(y(xyxRy))z(xzzRx)){\displaystyle \forall x(\exists y(x\neq y\wedge xRy))\wedge \exists z(x\neq z\wedge zRx))}

See also

[edit]

References

[edit]

External links

[edit]
General
Theorems (list)
 and paradoxes
Logics
Traditional
Propositional
Predicate
Set theory
Types ofsets
Maps and cardinality
Set theories
Formal systems (list),
language and syntax
Example axiomatic
systems
 (list)
Proof theory
Model theory
Computability theory
Related
Retrieved from "https://en.wikipedia.org/w/index.php?title=Quantifier_rank&oldid=1323636442"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp