Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Quadratic field

From Wikipedia, the free encyclopedia
(Redirected fromQuadratic fields)
Field (mathematics) generated by the square root of an integer

Inalgebraic number theory, aquadratic field is analgebraic number field ofdegree two overQ{\displaystyle \mathbf {Q} }, therational numbers.

Every such quadratic field is someQ(d){\displaystyle \mathbf {Q} ({\sqrt {d}})} whered{\displaystyle d} is a (uniquely defined)square-free integer different from0{\displaystyle 0} and1{\displaystyle 1}. Ifd>0{\displaystyle d>0}, the corresponding quadratic field is called areal quadratic field, and, ifd<0{\displaystyle d<0}, it is called animaginary quadratic field or acomplex quadratic field, corresponding to whether or not it is asubfield of the field of thereal numbers.

Quadratic fields have been studied in great depth, initially as part of the theory ofbinary quadratic forms. There remain some unsolved problems. Theclass number problem is particularly important.

Ring of integers

[edit]
Main article:Quadratic integer

Discriminant

[edit]

For a nonzero square free integerd{\displaystyle d}, thediscriminant of the quadratic fieldK=Q(d){\displaystyle K=\mathbf {Q} ({\sqrt {d}})} isd{\displaystyle d} ifd{\displaystyle d} is congruent to1{\displaystyle 1} modulo4{\displaystyle 4}, and otherwise4d{\displaystyle 4d}. For example, ifd{\displaystyle d} is1{\displaystyle -1}, thenK{\displaystyle K} is the field ofGaussian rationals and the discriminant is4{\displaystyle -4}. The reason for such a distinction is that thering of integers ofK{\displaystyle K} is generated by(1+d)/2{\displaystyle (1+{\sqrt {d}})/2} in the first case and byd{\displaystyle {\sqrt {d}}} in the second case.

The set of discriminants of quadratic fields is exactly the set offundamental discriminants (apart from1{\displaystyle 1}, which is a fundamental discriminant but not the discriminant of a quadratic field).

Prime factorization into ideals

[edit]

Any prime numberp{\displaystyle p} gives rise to an idealpOK{\displaystyle p{\mathcal {O}}_{K}} in thering of integersOK{\displaystyle {\mathcal {O}}_{K}} of a quadratic fieldK{\displaystyle K}. In line with general theory ofsplitting of prime ideals in Galois extensions, this may be[1]

p{\displaystyle p} isinert
(p){\displaystyle (p)} is a prime ideal.
The quotient ring is thefinite field withp2{\displaystyle p^{2}} elements:OK/pOK=Fp2{\displaystyle {\mathcal {O}}_{K}/p{\mathcal {O}}_{K}=\mathbf {F} _{p^{2}}}.
p{\displaystyle p}splits
(p){\displaystyle (p)} is a product of two distinct prime ideals ofOK{\displaystyle {\mathcal {O}}_{K}}.
The quotient ring is the productOK/pOK=Fp×Fp{\displaystyle {\mathcal {O}}_{K}/p{\mathcal {O}}_{K}=\mathbf {F} _{p}\times \mathbf {F} _{p}}.
p{\displaystyle p} isramified
(p){\displaystyle (p)} is the square of a prime ideal ofOK{\displaystyle {\mathcal {O}}_{K}}.
The quotient ring contains non-zeronilpotent elements.

The third case happens if and only ifp{\displaystyle p} divides the discriminantD{\displaystyle D}. The first and second cases occur when theKronecker symbol(D/p){\displaystyle (D/p)} equals1{\displaystyle -1} and+1{\displaystyle +1}, respectively. For example, ifp{\displaystyle p} is an odd prime not dividingD{\displaystyle D}, thenp{\displaystyle p} splits if and only ifD{\displaystyle D} is congruent to a square modulop{\displaystyle p}. The first two cases are, in a certain sense, equally likely to occur asp{\displaystyle p} runs through the primes—seeChebotarev density theorem.[2]

The law ofquadratic reciprocity implies that the splitting behaviour of a primep{\displaystyle p} in a quadratic field depends only onp{\displaystyle p} moduloD{\displaystyle D}, whereD{\displaystyle D} is the field discriminant.

Class group

[edit]

Determining the class group of a quadratic field extension can be accomplished usingMinkowski's bound and theKronecker symbol because of the finiteness of theclass group.[3] A quadratic fieldK=Q(d){\displaystyle K=\mathbf {Q} ({\sqrt {d}})} hasdiscriminantΔK={dd1(mod4)4dd2,3(mod4);{\displaystyle \Delta _{K}={\begin{cases}d&d\equiv 1{\pmod {4}}\\4d&d\equiv 2,3{\pmod {4}};\end{cases}}}so the Minkowski bound is[4]MK={2|Δ|/πd<0|Δ|/2d>0.{\displaystyle M_{K}={\begin{cases}2{\sqrt {|\Delta |}}/\pi &d<0\\{\sqrt {|\Delta |}}/2&d>0.\end{cases}}}

Then, the ideal class group is generated by the prime ideals whose norm is less thanMK{\displaystyle M_{K}}. This can be done by looking at the decomposition of the ideals(p){\displaystyle (p)} forpZ{\displaystyle p\in \mathbf {Z} } prime where|p|<Mk.{\displaystyle |p|<M_{k}.}[1]page 72 These decompositions can be found using theDedekind–Kummer theorem.

Quadratic subfields of cyclotomic fields

[edit]

The quadratic subfield of the prime cyclotomic field

[edit]

A classical example of the construction of a quadratic field is to take the unique quadratic field inside thecyclotomic field generated by a primitivep{\displaystyle p}th root of unity, withp{\displaystyle p} an odd prime number. The uniqueness is a consequence ofGalois theory, there being a unique subgroup ofindex2{\displaystyle 2} in the Galois group overQ{\displaystyle \mathbf {Q} }. As explained atGaussian period, the discriminant of the quadratic field isp{\displaystyle p} forp=4n+1{\displaystyle p=4n+1} andp{\displaystyle -p} forp=4n+3{\displaystyle p=4n+3}. This can also be predicted from enoughramification theory. In fact,p{\displaystyle p} is the only prime that ramifies in the cyclotomic field, sop{\displaystyle p} is the only prime that can divide the quadratic field discriminant. That rules out the 'other' discriminants4p{\displaystyle -4p} and4p{\displaystyle 4p} in the respective cases.

Other cyclotomic fields

[edit]

If one takes the other cyclotomic fields, they have Galois groups with extra2{\displaystyle 2}-torsion, so contain at least three quadratic fields. In general a quadratic field of field discriminantD{\displaystyle D} can be obtained as a subfield of a cyclotomic field ofD{\displaystyle D}-th roots of unity. This expresses the fact that theconductor of a quadratic field is the absolute value of its discriminant, a special case of theconductor-discriminant formula.

Orders of quadratic number fields of small discriminant

[edit]

The following table shows someorders of small discriminant of quadratic fields. Themaximal order of an algebraic number field is itsring of integers, and the discriminant of the maximal order is the discriminant of the field. The discriminant of a non-maximal order is the product of the discriminant of the corresponding maximal order by the square of the determinant of the matrix that expresses a basis of the non-maximal order over a basis of the maximal order. All these discriminants may be defined by the formula ofDiscriminant of an algebraic number field § Definition.

For real quadratic integer rings, theideal class number, which measures the failure of unique factorization, is given inOEIS A003649; for the imaginary case, they are given inOEIS A000924.

OrderDiscriminantClass numberUnitsComments
Z[5]{\displaystyle \mathbf {Z} \left[{\sqrt {-5}}\right]}20{\displaystyle -20}2{\displaystyle 2}±1{\displaystyle \pm 1}Ideal classes(1){\displaystyle (1)},(2,1+5){\displaystyle (2,1+{\sqrt {-5}})}
Z[(1+19)/2]{\displaystyle \mathbf {Z} \left[(1+{\sqrt {-19}})/2\right]}19{\displaystyle -19}1{\displaystyle 1}±1{\displaystyle \pm 1}Principal ideal domain, notEuclidean
Z[21]{\displaystyle \mathbf {Z} \left[2{\sqrt {-1}}\right]}16{\displaystyle -16}1{\displaystyle 1}±1{\displaystyle \pm 1}Non-maximal order
Z[(1+15)/2]{\displaystyle \mathbf {Z} \left[(1+{\sqrt {-15}})/2\right]}15{\displaystyle -15}2{\displaystyle 2}±1{\displaystyle \pm 1}Ideal classes(1){\displaystyle (1)},(1,(1+15)/2){\displaystyle (1,(1+{\sqrt {-15}})/2)}
Z[3]{\displaystyle \mathbf {Z} \left[{\sqrt {-3}}\right]}12{\displaystyle -12}1{\displaystyle 1}±1{\displaystyle \pm 1}Non-maximal order
Z[(1+11)/2]{\displaystyle \mathbf {Z} \left[(1+{\sqrt {-11}})/2\right]}11{\displaystyle -11}1{\displaystyle 1}±1{\displaystyle \pm 1}Euclidean
Z[2]{\displaystyle \mathbf {Z} \left[{\sqrt {-2}}\right]}8{\displaystyle -8}1{\displaystyle 1}±1{\displaystyle \pm 1}Euclidean
Z[(1+7)/2]{\displaystyle \mathbf {Z} \left[(1+{\sqrt {-7}})/2\right]}7{\displaystyle -7}1{\displaystyle 1}±1{\displaystyle \pm 1}Kleinian integers
Z[1]{\displaystyle \mathbf {Z} \left[{\sqrt {-1}}\right]}4{\displaystyle -4}1{\displaystyle 1}±1,±i{\displaystyle \pm 1,\pm i} (cyclic of order4{\displaystyle 4})Gaussian integers
Z[(1+3)/2]{\displaystyle \mathbf {Z} \left[(1+{\sqrt {-3}})/2\right]}3{\displaystyle -3}1{\displaystyle 1}±1,(±1±3)/2{\displaystyle \pm 1,(\pm 1\pm {\sqrt {-3}})/2}.Eisenstein integers
Z[21]{\displaystyle \mathbf {Z} \left[{\sqrt {-21}}\right]}84{\displaystyle -84}4{\displaystyle 4}Class group non-cyclic:(Z/2Z)2{\displaystyle (\mathbf {Z} /2\mathbf {Z} )^{2}}
Z[(1+5)/2]{\displaystyle \mathbf {Z} \left[(1+{\sqrt {5}})/2\right]}5{\displaystyle 5}1{\displaystyle 1}±((1+5)/2)n{\displaystyle \pm ((1+{\sqrt {5}})/2)^{n}} (norm(1)n{\displaystyle (-1)^{n}})
Z[2]{\displaystyle \mathbf {Z} \left[{\sqrt {2}}\right]}8{\displaystyle 8}1{\displaystyle 1}±(1+2)n{\displaystyle \pm (1+{\sqrt {2}})^{n}} (norm(1)n{\displaystyle (-1)^{n}})
Z[3]{\displaystyle \mathbf {Z} \left[{\sqrt {3}}\right]}12{\displaystyle 12}1{\displaystyle 1}±(2+3)n{\displaystyle \pm (2+{\sqrt {3}})^{n}} (norm1{\displaystyle 1})
Z[(1+13)/2]{\displaystyle \mathbf {Z} \left[(1+{\sqrt {13}})/2\right]}13{\displaystyle 13}1{\displaystyle 1}±((3+13)/2)n{\displaystyle \pm ((3+{\sqrt {13}})/2)^{n}} (norm(1)n{\displaystyle (-1)^{n}})
Z[(1+17)/2]{\displaystyle \mathbf {Z} \left[(1+{\sqrt {17}})/2\right]}17{\displaystyle 17}1{\displaystyle 1}±(4+17)n{\displaystyle \pm (4+{\sqrt {17}})^{n}} (norm(1)n{\displaystyle (-1)^{n}})
Z[5]{\displaystyle \mathbf {Z} \left[{\sqrt {5}}\right]}20{\displaystyle 20}1{\displaystyle 1}±(5+2)n{\displaystyle \pm ({\sqrt {5}}+2)^{n}} (norm(1)n{\displaystyle (-1)^{n}})Non-maximal order

Some of these examples are listed in Artin,Algebra (2nd ed.), §13.8.

See also

[edit]

Notes

[edit]
  1. ^abStevenhagen."Number Rings"(PDF). p. 36.
  2. ^Samuel 1972, pp. 76f
  3. ^Stein, William."Algebraic Number Theory, A Computational Approach"(PDF). pp. 77–86.
  4. ^Conrad, Keith."CLASS GROUP CALCULATIONS"(PDF).

References

[edit]

External links

[edit]
Retrieved from "https://en.wikipedia.org/w/index.php?title=Quadratic_field&oldid=1248406454"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp