Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

q-exponential distribution

From Wikipedia, the free encyclopedia
Generalization of exponential distribution
q-exponential distribution
Probability density function
Probability density plots of q-exponential distributions
Parametersq<2{\displaystyle q<2}shape (real)
λ>0{\displaystyle \lambda >0}rate (real)
Supportx[0,) for q1{\displaystyle x\in [0,\infty ){\text{ for }}q\geq 1}
x[0,1λ(1q)) for q<1{\displaystyle x\in \left[0,{\frac {1}{\lambda (1-q)}}\right){\text{ for }}q<1}
PDF(2q)λeq(λx){\displaystyle (2-q)\lambda e_{q}(-\lambda x)}
CDF1eqλx/q where q=12q{\displaystyle 1-e_{q'}^{-\lambda x/q'}{\text{ where }}q'={\frac {1}{2-q}}}
Mean1λ(32q) for q<32{\displaystyle {\frac {1}{\lambda (3-2q)}}{\text{ for }}q<{\frac {3}{2}}}
Otherwise undefined
Medianqlnq(1/2)λ where q=12q{\displaystyle {\frac {-q'\ln _{q'}(1/2)}{\lambda }}{\text{ where }}q'={\frac {1}{2-q}}}
Mode0
Varianceq2(2q3)2(3q4)λ2 for q<43{\displaystyle {\frac {q-2}{(2q-3)^{2}(3q-4)\lambda ^{2}}}{\text{ for }}q<{\frac {4}{3}}}
Skewness254q3q4q2 for q<54{\displaystyle {\frac {2}{5-4q}}{\sqrt {\frac {3q-4}{q-2}}}{\text{ for }}q<{\frac {5}{4}}}
Excess kurtosis64q3+17q220q+6(q2)(4q5)(5q6) for q<65{\displaystyle 6{\frac {-4q^{3}+17q^{2}-20q+6}{(q-2)(4q-5)(5q-6)}}{\text{ for }}q<{\frac {6}{5}}}

Theq-exponential distribution is aprobability distribution arising from the maximization of theTsallis entropy under appropriate constraints, including constraining the domain to be positive. It is one example of aTsallis distribution. Theq-exponential is a generalization of theexponential distribution in the same way that Tsallis entropy is a generalization of standardBoltzmann–Gibbs entropy orShannon entropy.[1] The exponential distribution is recovered asq1.{\displaystyle q\rightarrow 1.}

Originally proposed by the statisticiansGeorge Box andDavid Cox in 1964,[2] and known as the reverseBox–Cox transformation forq=1λ,{\displaystyle q=1-\lambda ,} a particular case ofpower transform in statistics.

Characterization

[edit]

Probability density function

[edit]

Theq-exponential distribution has the probability density function

(2q)λeq(λx){\displaystyle (2-q)\lambda e_{q}(-\lambda x)}

where

eq(x)=[1+(1q)x]1/(1q){\displaystyle e_{q}(x)=[1+(1-q)x]^{1/(1-q)}}

is theq-exponential ifq ≠ 1. Whenq = 1,eq(x) is just exp(x).

Derivation

[edit]

In a similar procedure to how theexponential distribution can be derived (using the standard Boltzmann–Gibbs entropy or Shannon entropy and constraining the domain of the variable to be positive), theq-exponential distribution can be derived from a maximization of the Tsallis Entropy subject to the appropriate constraints.

Relationship to other distributions

[edit]

Theq-exponential is a special case of thegeneralized Pareto distribution where

μ=0,ξ=q12q,σ=1λ(2q).{\displaystyle \mu =0,\quad \xi ={\frac {q-1}{2-q}},\quad \sigma ={\frac {1}{\lambda (2-q)}}.}

Theq-exponential is the generalization of theLomax distribution (Pareto Type II), as it extends this distribution to the cases of finite support. The Lomax parameters are:

α=2qq1,λLomax=1λ(q1).{\displaystyle \alpha ={\frac {2-q}{q-1}},\quad \lambda _{\mathrm {Lomax} }={\frac {1}{\lambda (q-1)}}.}

As the Lomax distribution is a shifted version of thePareto distribution, theq-exponential is a shifted reparameterized generalization of the Pareto. Whenq > 1, theq-exponential is equivalent to the Pareto shifted to have support starting at zero. Specifically, if

Xq-Exp(q,λ) and Y[Pareto(xm=1λ(q1),α=2qq1)xm],{\displaystyle X\sim \operatorname {{\mathit {q}}-Exp} (q,\lambda ){\text{ and }}Y\sim \left[\operatorname {Pareto} \left(x_{m}={\frac {1}{\lambda (q-1)}},\alpha ={\frac {2-q}{q-1}}\right)-x_{m}\right],}

thenXY.{\displaystyle X\sim Y.}

Generating random deviates

[edit]

Random deviates can be drawn usinginverse transform sampling. Given a variableU that is uniformly distributed on the interval (0,1), then

X=qlnq(U)λq-Exp(q,λ){\displaystyle X={\frac {-q'\ln _{q'}(U)}{\lambda }}\sim \operatorname {{\mathit {q}}-Exp} (q,\lambda )}

wherelnq{\displaystyle \ln _{q'}} is theq-logarithm andq=12q.{\displaystyle q'={\frac {1}{2-q}}.}

Applications

[edit]

Being apower transform, it is a usual technique in statistics for stabilizing the variance, making the data more normal distribution-like and improving the validity of measures of association such as the Pearson correlation between variables. It has been found to be an accurate model for train delays.[3]It is also found in atomic physics and quantum optics, for example processes of molecular condensate creation via transition through the Feshbach resonance.[4]

See also

[edit]

Notes

[edit]
  1. ^Tsallis, C. Nonadditive entropy and nonextensive statistical mechanics-an overview after 20 years. Braz. J. Phys. 2009, 39, 337–356
  2. ^Box, George E. P.;Cox, D. R. (1964). "An analysis of transformations".Journal of the Royal Statistical Society, Series B.26 (2):211–252.doi:10.1111/j.2517-6161.1964.tb00553.x.JSTOR 2984418.MR 0192611.
  3. ^Keith Briggs and Christian Beck (2007). "Modelling train delays withq-exponential functions".Physica A.378 (2):498–504.arXiv:physics/0611097.Bibcode:2007PhyA..378..498B.doi:10.1016/j.physa.2006.11.084.S2CID 107475.
  4. ^C. Sun; N. A. Sinitsyn (2016). "Landau-Zener extension of the Tavis-Cummings model: Structure of the solution".Phys. Rev. A.94 (3) 033808.arXiv:1606.08430.Bibcode:2016PhRvA..94c3808S.doi:10.1103/PhysRevA.94.033808.S2CID 119317114.

Further reading

[edit]

External links

[edit]
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)
Directional
Degenerate
andsingular
Degenerate
Dirac delta function
Singular
Cantor
Families
Retrieved from "https://en.wikipedia.org/w/index.php?title=Q-exponential_distribution&oldid=1314539427"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp