Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

q-Gaussian distribution

From Wikipedia, the free encyclopedia
Generalization of Gaussian distribution
This article is about the Tsallis q-Gaussian. For a different q-analog, seeGaussian q-distribution.
q-Gaussian
Probability density function
Probability density plots of q-Gaussian distributions
Parametersq<3{\displaystyle q<3}shape (real)
β>0{\displaystyle \beta >0} (real)
Supportx(;+){\displaystyle x\in (-\infty ;+\infty )\!} for1q<3{\displaystyle 1\leq q<3}
x[±1β(1q)]{\displaystyle x\in \left[\pm {1 \over {\sqrt {\beta (1-q)}}}\right]} forq<1{\displaystyle q<1}
PDFβCqeq(βx2){\displaystyle {{\sqrt {\beta }} \over C_{q}}e_{q}({-\beta x^{2}})}
CDFsee text
Mean0 for q<2{\displaystyle 0{\text{ for }}q<2}, otherwise undefined
Median0{\displaystyle 0}
Mode0{\displaystyle 0}
Variance1β(53q) for q<53{\displaystyle {1 \over {\beta (5-3q)}}{\text{ for }}q<{5 \over 3}}
 for 53q<2{\displaystyle \infty {\text{ for }}{5 \over 3}\leq q<2}
Undefined for 2q<3{\displaystyle {\text{Undefined for }}2\leq q<3}
Skewness0 for q<32{\displaystyle 0{\text{ for }}q<{3 \over 2}}
Excess kurtosis6q175q for q<75{\displaystyle 6{q-1 \over 7-5q}{\text{ for }}q<{7 \over 5}}

Theq-Gaussian is a probability distribution arising from the maximization of theTsallis entropy under appropriate constraints. It is one example of aTsallis distribution. Theq-Gaussian is a generalization of the Gaussian in the same way that Tsallis entropy is a generalization of standardBoltzmann–Gibbs entropy orShannon entropy.[1] Thenormal distribution is recovered asq → 1.

Theq-Gaussian has been applied to problems in the fields ofstatistical mechanics,geology,anatomy,astronomy,economics,finance, andmachine learning.[citation needed] The distribution is often favored for itsheavy tails in comparison to the Gaussian for 1 <q < 3. Forq<1{\displaystyle q<1} theq-Gaussian distribution is the PDF of a boundedrandom variable. This makes in biology and other domains[2] theq-Gaussian distribution more suitable than Gaussian distribution to model the effect of external stochasticity. A generalizedq-analog of the classicalcentral limit theorem[3] was proposed in 2008, in which the independence constraint for thei.i.d. variables is relaxed to an extent defined by theq parameter, with independence being recovered asq → 1. However, a proof of such a theorem is still lacking.[4]

In the heavy tail regions, the distribution is equivalent to theStudent'st-distribution with a direct mapping betweenq and thedegrees of freedom. A practitioner using one of these distributions can therefore parameterize the same distribution in two different ways. The choice of theq-Gaussian form may arise if the system isnon-extensive, or if there is lack of a connection to small samples sizes.

Characterization

[edit]

Probability density function

[edit]

The standardq-Gaussian has the probability density function[3]

f(x)=βCqeq(βx2){\displaystyle f(x)={{\sqrt {\beta }} \over C_{q}}e_{q}(-\beta x^{2})}

where

eq(x)=[1+(1q)x]+11q{\displaystyle e_{q}(x)=[1+(1-q)x]_{+}^{1 \over 1-q}}

is theq-exponential and the normalization factorCq{\displaystyle C_{q}} is given by

Cq=2πΓ(11q)(3q)1qΓ(3q2(1q)) for <q<1{\displaystyle C_{q}={{2{\sqrt {\pi }}\Gamma \left({1 \over 1-q}\right)} \over {(3-q){\sqrt {1-q}}\Gamma \left({3-q \over 2(1-q)}\right)}}{\text{ for }}-\infty <q<1}
Cq=π for q=1{\displaystyle C_{q}={\sqrt {\pi }}{\text{ for }}q=1\,}
Cq=πΓ(3q2(q1))q1Γ(1q1) for 1<q<3.{\displaystyle C_{q}={{{\sqrt {\pi }}\Gamma \left({3-q \over 2(q-1)}\right)} \over {{\sqrt {q-1}}\Gamma \left({1 \over q-1}\right)}}{\text{ for }}1<q<3.}

Note that forq<1{\displaystyle q<1} theq-Gaussian distribution is the PDF of a boundedrandom variable.

Cumulative density function

[edit]

For1<q<3{\displaystyle 1<q<3} cumulative density function is[5]

F(x)=12+q1Γ(1q1)xβ2F1(12,1q1;32;(q1)βx2)πΓ(3q2(q1)),{\displaystyle F(x)={\frac {1}{2}}+{\frac {{\sqrt {q-1}}\,\Gamma \left({1 \over q-1}\right)x{\sqrt {\beta }}\,{}_{2}F_{1}\left({\tfrac {1}{2}},{\tfrac {1}{q-1}};{\tfrac {3}{2}};-(q-1)\beta x^{2}\right)}{{\sqrt {\pi }}\,\Gamma \left({3-q \over 2(q-1)}\right)}},}

where2F1(a,b;c;z){\displaystyle {}_{2}F_{1}(a,b;c;z)} is thehypergeometric function. As the hypergeometric function is defined for|z| < 1 butx is unbounded, Pfaff transformation could be used.

Forq<1{\displaystyle q<1},F(x)={0x<1β(1q),12+1qΓ(53q2(1q))xβ2F1(12,1q1;32;(q1)βx2)πΓ(2q1q)1β(1q)<x<1β(1q),1x>1β(1q).{\displaystyle F(x)={\begin{cases}0&x<-{\frac {1}{\sqrt {\beta (1-q)}}},\\{\frac {1}{2}}+{\frac {{\sqrt {1-q}}\,\Gamma \left({5-3q \over 2(1-q)}\right)x{\sqrt {\beta }}\,{}_{2}F_{1}\left({\tfrac {1}{2}},{\tfrac {1}{q-1}};{\tfrac {3}{2}};-(q-1)\beta x^{2}\right)}{{\sqrt {\pi }}\,\Gamma \left({2-q \over 1-q}\right)}}&-{\frac {1}{\sqrt {\beta (1-q)}}}<x<{\frac {1}{\sqrt {\beta (1-q)}}},\\1&x>{\frac {1}{\sqrt {\beta (1-q)}}}.\end{cases}}}

Entropy

[edit]

Just as thenormal distribution is the maximuminformation entropy distribution for fixed values of the first momentE(X){\displaystyle \operatorname {E} (X)} and second momentE(X2){\displaystyle \operatorname {E} (X^{2})} (with the fixed zeroth momentE(X0)=1{\displaystyle \operatorname {E} (X^{0})=1} corresponding to the normalization condition), theq-Gaussian distribution is the maximumTsallis entropy distribution for fixed values of these three moments.

Related distributions

[edit]

Student'st-distribution

[edit]

While it can be justified by an interesting alternative form of entropy, statistically it is a scaled reparametrization of theStudent'st-distribution introduced by W. Gosset in 1908 to describe small-sample statistics. In Gosset's original presentation the degrees of freedom parameterν was constrained to be a positive integer related to the sample size, but it is readily observed that Gosset's density function is valid for all real values ofν.[6] The scaled reparametrization introduces the alternative parametersq andβ which are related toν.

Given a Student'st-distribution withν degrees of freedom, the equivalentq-Gaussian has

q=ν+3ν+1 with β=13q{\displaystyle q={\frac {\nu +3}{\nu +1}}{\text{ with }}\beta ={\frac {1}{3-q}}}

with inverse

ν=3qq1, but only if β=13q.{\displaystyle \nu ={\frac {3-q}{q-1}},{\text{ but only if }}\beta ={\frac {1}{3-q}}.}

Wheneverβ13q{\displaystyle \beta \neq {1 \over {3-q}}}, the function is simply a scaled version of Student'st-distribution.

It is sometimes argued that the distribution is a generalization of Student'st-distribution to negative and or non-integer degrees of freedom. However, the theory of Student'st-distribution extends trivially to all real degrees of freedom, where the support of the distribution is nowcompact rather than infinite in the case ofν < 0.

Three-parameter version

[edit]

As with many distributions centered on zero, theq-Gaussian can be trivially extended to include a location parameterμ. The density then becomes defined by

βCqeq(β(xμ)2).{\displaystyle {{\sqrt {\beta }} \over C_{q}}e_{q}({-\beta (x-\mu )^{2}}).}

Generating random deviates

[edit]

TheBox–Muller transform has been generalized to allow random sampling fromq-Gaussians.[7][8] The standard Box–Muller technique generates pairs of independent normally distributed variables from equations of the following form.

Z1=2ln(U1)cos(2πU2){\displaystyle Z_{1}={\sqrt {-2\ln(U_{1})}}\cos(2\pi U_{2})}
Z2=2ln(U1)sin(2πU2){\displaystyle Z_{2}={\sqrt {-2\ln(U_{1})}}\sin(2\pi U_{2})}

The generalized Box–Muller technique can generates pairs ofq-Gaussian deviates that are not independent. In practice, only a single deviate will be generated from a pair of uniformly distributed variables. The following formula will generate deviates from aq-Gaussian with specified parameterq andβ=13q{\displaystyle \beta ={1 \over {3-q}}}

Z=2 lnq(U1) cos(2πU2){\displaystyle Z={\sqrt {-2{\text{ ln}}_{q'}(U_{1})}}{\text{ cos}}(2\pi U_{2})}

where lnq{\displaystyle {\text{ ln}}_{q}} is theq-logarithm andq=1+q3q{\displaystyle q'={{1+q} \over {3-q}}}

These deviates can be transformed to generate deviates from an arbitraryq-Gaussian by

Z=μ+Zβ(3q){\displaystyle Z'=\mu +{Z \over {\sqrt {\beta (3-q)}}}}

Applications

[edit]

Physics

[edit]

It has been shown that the momentum distribution of cold atoms in dissipative optical lattices is aq-Gaussian.[9]

Theq-Gaussian distribution is also obtained as the asymptoticprobability density function of the position of the unidimensional motion of a mass subject to two forces: a deterministic force of the typeF1(x)=2x/(1x2){\textstyle F_{1}(x)=-2x/(1-x^{2})} (determining an infinite potential well) and a stochastic white noise forceF2(t)=2(1q)ξ(t){\textstyle F_{2}(t)={\sqrt {2(1-q)}}\xi (t)}, whereξ(t){\displaystyle \xi (t)} is awhite noise. Note that in the overdamped/small mass approximation the above-mentioned convergence fails forq<0{\displaystyle q<0}, as recently shown.[10]

Finance

[edit]

Financial return distributions in the New York Stock Exchange, NASDAQ and elsewhere have been interpreted asq-Gaussians.[11][12]

See also

[edit]

Notes

[edit]
  1. ^Tsallis, C. Nonadditive entropy and nonextensive statistical mechanics-an overview after 20 years. Braz. J. Phys. 2009, 39, 337–356
  2. ^d'Onofrio A. (ed.) Bounded Noises in Physics, Biology, and Engineering. Birkhauser (2013)
  3. ^abUmarov, Sabir; Tsallis, Constantino; Steinberg, Stanly (2008)."On aq-Central Limit Theorem Consistent with Nonextensive Statistical Mechanics"(PDF).Milan J. Math.76. Birkhauser Verlag:307–328.doi:10.1007/s00032-008-0087-y.S2CID 55967725. Retrieved2011-07-27.
  4. ^Hilhorst, H.J. (2010), "Note on aq-modified central limit theorem",Journal of Statistical Mechanics: Theory and Experiment,2010 (10) 10023,arXiv:1008.4259,Bibcode:2010JSMTE..10..023H,doi:10.1088/1742-5468/2010/10/P10023,S2CID 119316670.
  5. ^"TsallisQGaussianDistribution—Wolfram Language Documentation".reference.wolframcloud.com. Retrieved2025-02-15.
  6. ^de Souza, André M. C.; Tsallis, Constantino (15 February 1997). "Student's t- and r-distributions: Unified derivation from an entropic variational principle".Physica A: Statistical Mechanics and Its Applications.236 (1):52–57.Bibcode:1997PhyA..236...52D.doi:10.1016/S0378-4371(96)00395-0.
  7. ^Thistleton, William J.; Marsh, John A.; Nelson, Kenric; Tsallis, Constantino (December 2007). "Generalized Box–MÜller Method for Generating $q$-Gaussian Random Deviates".IEEE Transactions on Information Theory.53 (12):4805–4810.doi:10.1109/TIT.2007.909173.
  8. ^Nelson, Kenric P.; Thistleton, William J. (October 2021). "Comments on "Generalized Box-Müller Method for Generating q -Gaussian Random Deviates"".IEEE Transactions on Information Theory.67 (10):6785–6789.Bibcode:2021ITIT...67.6785N.doi:10.1109/TIT.2021.3071489.
  9. ^Douglas, P.; Bergamini, S.; Renzoni, F. (2006)."Tunable Tsallis Distributions in Dissipative Optical Lattices"(PDF).Physical Review Letters.96 (11) 110601.Bibcode:2006PhRvL..96k0601D.doi:10.1103/PhysRevLett.96.110601.PMID 16605807.
  10. ^Domingo, Dario; d'Onofrio, Alberto; Flandoli, Franco (2017)."Boundedness vs unboundedness of a noise linked to Tsallis q-statistics: The role of the overdamped approximation".Journal of Mathematical Physics.58 (3). AIP Publishing: 033301.arXiv:1709.08260.Bibcode:2017JMP....58c3301D.doi:10.1063/1.4977081.ISSN 0022-2488.S2CID 84178785.
  11. ^Borland, Lisa (2002-08-07). "Option Pricing Formulas Based on a Non-Gaussian Stock Price Model".Physical Review Letters.89 (9) 098701. American Physical Society (APS).arXiv:cond-mat/0204331.Bibcode:2002PhRvL..89i8701B.doi:10.1103/physrevlett.89.098701.ISSN 0031-9007.PMID 12190447.S2CID 5740827.
  12. ^L. Borland, The pricing of stock options, in Nonextensive Entropy – Interdisciplinary Applications, eds. M. Gell-Mann and C. Tsallis (Oxford University Press, New York, 2004)

Further reading

[edit]

External links

[edit]
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)
Directional
Degenerate
andsingular
Degenerate
Dirac delta function
Singular
Cantor
Families
Retrieved from "https://en.wikipedia.org/w/index.php?title=Q-Gaussian_distribution&oldid=1334019552"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp