Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Pummerer rearrangement

From Wikipedia, the free encyclopedia
Reaction in organic chemistry
Pummerer rearrangement
Named afterRudolph Pummerer
Reaction typeRearrangement reaction
Identifiers
RSC ontology IDRXNO:0000220

ThePummerer rearrangement is anorganic reaction whereby analkylsulfoxiderearranges to an α-acyloxythioether (monothioacetal-ester) in the presence ofacetic anhydride.[1][2][3]

The Pummerer rearrangement
The Pummerer rearrangement

The stoichiometry of the reaction is:

RS(O)CHR'2 + Ac2O → RSC(OAc)R'2 + AcOH

Synthetic implementation

[edit]

Aside fromacetic anhydride,trifluoroacetic anhydride andtrifluoromethanesulfonic anhydride have been employed as activators.[4] Common nucleophiles besides acetates are arenes, alkenes, amides, and phenols.

Many variations of the basic Pummerer rearrangement have been described:[5]

  • additive Pummerer reactions
  • domino Pummerer reaction, whereby the C-S bond is cleaved often
  • asymmetric Pummerer reactions, which exploits the chirality of most sulfoxides
  • interrupted Pummerer reactions

The usage of α-acyl sulfoxides andLewis acids, such asTiCl4 andSnCl4, allow the reaction to proceed at lower temperatures (0 °C).[6]

Thionyl chloride can be used in place of acetic anhydride to trigger the elimination for forming the electrophilic intermediate and supplying chloride as the nucleophile to give an α-chloro-thioether:[7]

Example of the Pummerer rearrangement using thionyl chloride
Example of the Pummerer rearrangement using thionyl chloride

Otheranhydrides and acyl halides can give similar products. Inorganic acids can also give this reaction. This product can be converted toaldehyde orketone byhydrolysis.[8]

Mechanism

[edit]

The mechanism of the Pummerer rearrangement begins with theacylation of thesulfoxide (resonance structures1 and2) byacetic anhydride to give3, withacetate as byproduct. The acetate then acts as a catalyst to induce anelimination reaction to produce the cationic-thial structure4, withacetic acid as byproduct. Finally, acetate attacks the thial to give the final product5.

The mechanism of the Pummerer rearrangement
The mechanism of the Pummerer rearrangement

The activated thialelectrophile can be trapped by various intramolecular and intermolecularnucleophiles to formcarbon–carbon bonds and carbon–heteroatom bonds.

The intermediate is so electrophilic that even neutral nucleophiles can be used, includingaromatic rings withelectron donating groups such as1,3-benzodioxole:[9]

Example of the Pummerer rearrangement using veratrole
Example of the Pummerer rearrangement using veratrole

It is possible to perform the rearrangement using selenium in the place of sulfur.[10]

Pummerer fragmentation

[edit]

When a substituent on the α position can form a stablecarbocation, this group rather than the α-hydrogen atom will eliminate in the intermediate step. This variation is called aPummerer fragmentation.[11] This reaction type is demonstrated below with a set of sulfoxides andtrifluoroacetic anhydride (TFAA):

Pummerer fragmentation
Pummerer fragmentation

The organic group "R2" shown in the diagram above on the bottom right is themethyl violet carbocation, whose pKR+ of 9.4 is not sufficient to out-compete loss of H+ and therefore a classical Pummerer rearrangement occurs. The reaction on the left is a fragmentation because the leaving group with pKR+ = 23.7 is particularly stable.

History

[edit]

The reaction was discovered byRudolf Pummerer [de], who reported it in 1909.[12][13]

See also

[edit]

References

[edit]
  1. ^de Lucchi, Ottorino; Miotti, Umberto; Modena, Giorgio (1991).The Pummerer Reaction of Sulfinyl Compounds. Vol. 40. pp. 157–184.doi:10.1002/0471264180.or040.03.ISBN 978-0471264187.{{cite book}}:|journal= ignored (help)
  2. ^Padwa, Albert; Gunn, David E. Jr.; Osterhout, Martin H. (1997). "Application of the Pummerer Reaction Toward the Synthesis of Complex Carbocycles and Heterocycles".Synthesis.1997 (12):1353–1377.doi:10.1055/s-1997-1384.
  3. ^Padwa, Albert; Bur, Scott K.; Danca, Diana M.; Ginn, John D.; Lynch, Stephen M. (2002). "Linked Pummerer-Mannich Ion Cyclizations for Heterocyclic Chemistry".Synlett.2002 (6):851–862.doi:10.1055/s-2002-31891.
  4. ^Smith, Laura H. S.; Coote, Susannah C.; Sneddon, Helen F.; Procter, David J. (2010)."Beyond the Pummerer Reaction: Recent Developments in Thionium Ion Chemistry".Angewandte Chemie International Edition.49 (34):5832–44.Bibcode:2010ACIE...49.5832S.doi:10.1002/anie.201000517.PMID 20583014.
  5. ^Akai, Shuji; Kita, Yasuyuki (2007). "Recent Advances in Pummerer Reactions".Sulfur-Mediated Rearrangements I. Topics in Current Chemistry. Vol. 274. pp. 35–76.doi:10.1007/128_073.ISBN 978-3-540-68097-0.
  6. ^Stamos, Ioannis K. (1986). "Arylation of α-phosphoryl sulfides via their pummerer rearrangement intermediates generated from the corresponding sulfoxides".Tetrahedron Letters.27 (51):6261–6262.doi:10.1016/S0040-4039(00)85447-7.
  7. ^Kosugi, Hiroshi; Watanabe, Yasuyuki; Uda, Hisashi (1989). "Lewis Acid-Mediated Carbon-Carbon bond forming reaction using the Pummerer Rearrangement Products from Chiral beta-Hydroxy Sulfoxides".Chemistry Letters.18 (10):1865–1868.doi:10.1246/cl.1989.1865.
  8. ^Meffre, Patrick; Durand, Philippe; Le Goffic, François (1999). "Methyl (S)-2-phthalimido-4-methylthiobutanoate".Organic Syntheses.76: 123.doi:10.15227/orgsyn.076.0123.
  9. ^Ishibashi, Hiroyuki; Miki, Yumiko; Ikeda, Yoshiaki; Kiriyama, Akiko; Ikeda, Masazumi (1989)."Synthesis of α-(Methylthio)arylacetamides and Their Conversion into Some Biologically Active Arylethylamines".Biological & Pharmaceutical Bulletin.37 (12):3396–3398.doi:10.1248/cpb.37.3396.
  10. ^Gilmour, Ryan; Prior, Timothy J.; Burton, Jonathan W.; Holmes, Andrew B. (2007). "An organocatalytic approach to the core of eunicellin".Chemical Communications (38):3954–6.doi:10.1039/B709322E.PMID 17896044.
  11. ^Laleu, Benoît; Santarém Machado, Marco; Lacour, Jérôme (25 May 2006). "Pummerer fragmentation vs. Pummerer rearrangement: a mechanistic analysis".Chemical Communications (26):2786–2788.doi:10.1039/b605187a.PMID 17009463.
  12. ^Pummerer, Rudolph (1909)."Über Phenyl-sulfoxyessigsäure".Chemische Berichte.42 (2):2282–2291.doi:10.1002/cber.190904202126.
  13. ^Pummerer, Rudolph (1910)."Über Phenylsulfoxy-essigsäure. (II.)".Chemische Berichte.43 (2):1401–1412.doi:10.1002/cber.19100430241.
Retrieved from "https://en.wikipedia.org/w/index.php?title=Pummerer_rearrangement&oldid=1304388875"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp