
Inmathematics,Puiseux series are a generalization ofpower series that allow for negative and fractional exponents of theindeterminate. For example, the series
is a Puiseux series in the indeterminate x. Puiseux series were first introduced byIsaac Newton in 1676[1] and rediscovered byVictor Puiseux in 1850.[2]
The definition of a Puiseux series includes that the denominators of the exponents must be bounded. So, by reducing exponents to a common denominatorn, a Puiseux series becomes aLaurent series in annth root of the indeterminate. For example, the example above is a Laurent series in Because a complex number hasnnth roots, aconvergent Puiseux series typically definesn functions in aneighborhood of0.
Puiseux's theorem, sometimes also called theNewton–Puiseux theorem, asserts that, given apolynomial equation with complex coefficients, its solutions iny, viewed as functions ofx, may be expanded as Puiseux series inx that areconvergent in someneighbourhood of0. In other words, every branch of analgebraic curve may be locally described by a Puiseux series inx (or inx −x0 when considering branches above a neighborhood ofx0 ≠ 0).
Using modern terminology, Puiseux's theorem asserts that the set of Puiseux series over analgebraically closed field of characteristic 0 is itself an algebraically closed field, called thefield of Puiseux series. It is thealgebraic closure of thefield of formal Laurent series, which itself is thefield of fractions of thering of formal power series.
IfK is afield (such as thecomplex numbers), aPuiseux series with coefficients inK is an expression of the form
where is a positive integer and is an integer. In other words, Puiseux series differ fromLaurent series in that they allow for fractional exponents of the indeterminate, as long as these fractional exponents have bounded denominator (heren). Just as with Laurent series, Puiseux series allow for negative exponents of the indeterminate as long as these negative exponents are bounded below (here by). Addition and multiplication are as expected: for example,
and
One might define them by first "upgrading" the denominator of the exponents to some common denominatorN and then performing the operation in the corresponding field of formal Laurent series of.
The Puiseux series with coefficients inK form a field, which is the union
of fields offormal Laurent series in (considered as an indeterminate).
This yields an alternative definition of the field of Puiseux series in terms of adirect limit. For every positive integern, let be an indeterminate (meant to represent), and be the field of formal Laurent series in Ifm dividesn, the mapping induces afield homomorphism and these homomorphisms form adirect system that has the field of Puiseux series as a direct limit. The fact that every field homomorphism is injective shows that this direct limit can be identified with the above union, and that the two definitions are equivalent (up to an isomorphism).
A nonzero Puiseux series can be uniquely written as
with Thevaluation
of is the smallest exponent for the natural order of the rational numbers, and the corresponding coefficient is called theinitial coefficient orvaluation coefficient of . The valuation of the zero series is
The functionv is avaluation and makes the Puiseux series avalued field, with theadditive group of the rational numbers as itsvaluation group.
As for every valued fields, the valuation defines aultrametric distance by the formula For this distance, the field of Puiseux series is ametric space. The notation
expresses that a Puiseux is the limit of its partial sums. However, the field of Puiseux series is notcomplete; see below§ Levi–Civita field.
Puiseux series provided byNewton–Puiseux theorem areconvergent in the sense that there is a neighborhood of zero in which they are convergent (0 excluded if the valuation is negative).More precisely, let
be a Puiseux series withcomplex coefficients. There is a real numberr, called theradius of convergence such that the series converges ifT is substituted for a nonzero complex numbert of absolute value less thanr, andr is the largest number with this property. A Puiseux series isconvergent if it has a nonzero radius of convergence.
Because a nonzero complex number hasnnth roots, some care must be taken for the substitution: a specificnth root oft, sayx, must be chosen. Then the substitution consists of replacing by for everyk.
The existence of the radius of convergence results from the similar existence for apower series, applied to considered as a power series in
It is a part of Newton–Puiseux theorem that the provided Puiseux series have a positive radius of convergence, and thus define a (multivalued)analytic function in some neighborhood of zero (zero itself possibly excluded).
If the base field isordered, then the field of Puiseux series over is also naturally (“lexicographically”) ordered as follows: a non-zero Puiseux series with 0 is declared positive whenever its valuation coefficient is so. Essentially, this means that any positive rational power of the indeterminate is made positive, but smaller than any positive element in the base field.
If the base field is endowed with a valuation, then we can construct a different valuation on the field of Puiseux series over by letting the valuation be where is the previously defined valuation ( is the first non-zero coefficient) and is infinitely large (in other words, the value group of is ordered lexicographically, where is the value group of). Essentially, this means that the previously defined valuation is corrected by an infinitesimal amount to take into account the valuation given on the base field.
As early as 1671,[3]Isaac Newton implicitly used Puiseux series and proved the following theorem for approximating withseries theroots ofalgebraic equations whose coefficients are functions that are themselves approximated with series orpolynomials. For this purpose, he introduced theNewton polygon, which remains a fundamental tool in this context. Newton worked with truncated series, and it is only in 1850 thatVictor Puiseux[2] introduced the concept of (non-truncated) Puiseux series and proved the theorem that is now known asPuiseux's theorem orNewton–Puiseux theorem.[4] The theorem asserts that, given an algebraic equation whose coefficients are polynomials or, more generally, Puiseux series over afield ofcharacteristic zero, every solution of the equation can be expressed as a Puiseux series. Moreover, the proof provides an algorithm for computing these Puiseux series, and, when working over thecomplex numbers, the resulting series are convergent.
In modern terminology, the theorem can be restated as:the field of Puiseux series over an algebraically closed field of characteristic zero, and the field of convergent Puiseux series over the complex numbers, are bothalgebraically closed.
Let
be a polynomial whose nonzero coefficients are polynomials, power series, or even Puiseux series inx. In this section, the valuation of is the lowest exponent ofx in (Most of what follows applies more generally to coefficients in anyvalued ring.)
For computing the Puiseux series that areroots ofP (that is solutions of thefunctional equation), the first thing to do is to compute the valuation of the roots. This is the role of the Newton polygon.
Let us consider, in aCartesian plane, the points of coordinates TheNewton polygon ofP is the lowerconvex hull of these points. That is, the edges of the Newton polygon are theline segments joining two of these points, such that all these points are not below the line supporting the segment (below is, as usually, relative to the value of the second coordinate).
Given a Puiseux series of valuation, the valuation of is at least the minimum of the numbers and is equal to this minimum if this minimum is reached for only onei. So, for being a root ofP, the minimum must be reached at least twice. That is, there must be two values and ofi such that and for everyi.
That is, and must belong to an edge of the Newton polygon, andmust be the opposite of the slope of this edge. This is a rational number as soon as all valuations are rational numbers, and this is the reason for introducing rational exponents in Puiseux series.
In summary,the valuation of a root ofPmust be the opposite of a slope of an edge of the Newton polynomial.
The initial coefficient of a Puiseux series solution of can easily be deduced. Let be the initial coefficient of that is, the coefficient of in Let be a slope of the Newton polygon, and be the initial term of a corresponding Puiseux series solution of If no cancellation would occur, then the initial coefficient of would bewhereI is the set of the indicesi such that belongs to the edge of slope of the Newton polygon. So, for having a root, the initial coefficient must be a nonzero root of the polynomial(this notation will be used in the next section).
In summary, the Newton polynomial allows an easy computation of all possible initial terms of Puiseux series that are solutions of
The proof of Newton–Puiseux theorem will consist of starting from these initial terms for computing recursively the next terms of the Puiseux series solutions.
Let suppose that the first term of a Puiseux series solution of has been be computed by the method of the preceding section. It remains to compute For this, we set and write theTaylor expansion ofP at
This is a polynomial inz whose coefficients are Puiseux series inx. One may apply to it the method of the Newton polygon, and iterate for getting the terms of the Puiseux series, one after the other. But some care is required for insuring that and showing that one get a Puiseux series, that is, that the denominators of the exponents ofx remain bounded.
The derivation with respect toy does not change the valuation inx of the coefficients; that is,
and the equality occurs if and only if where is the polynomial of the preceding section. Ifm is the multiplicity of as a root of it results that the inequality is an equality for The terms such that can be forgotten as far as one is concerned by valuations, as and imply
This means that, for iterating the method of Newton polygon, one can and one must consider only the part of the Newton polygon whose first coordinates belongs to the interval Two cases have to be considered separately and will be the subject of next subsections, the so-calledramified case, wherem > 1, and theregular case wherem = 1.
The way of applying recursively the method of the Newton polygon has been described precedingly. As each application of the method may increase, in the ramified case, the denominators of exponents (valuations), it remains to prove that one reaches the regular case after a finite number of iterations (otherwise the denominators of the exponents of the resulting series would not be bounded, and this series would not be a Puiseux series. By the way, it will also be proved that one gets exactly as many Puiseux series solutions as expected, that is the degree of iny.
Without loss of generality, one can suppose that that is, Indeed, each factory of provides a solution that is the zero Puiseux series, and such factors can be factored out.
As the characteristic is supposed to be zero, one can also suppose that is asquare-free polynomial, that is that the solutions of are all different. Indeed, thesquare-free factorization uses only the operations of the field of coefficients for factoring into square-free factors than can be solved separately. (The hypothesis of characteristic zero is needed, since, in characteristicp, the square-free decomposition can provide irreducible factors, such as that have multiple roots over an algebraic extension.)
In this context, one defines thelength of an edge of a Newton polygon as the difference of theabscissas of its end points. The length of a polygon is the sum of the lengths of its edges. With the hypothesis the length of the Newton polygon ofP is its degree iny, that is the number of its roots. The length of an edge of the Newton polygon is the number of roots of a given valuation. This number equals the degree of the previously defined polynomial
The ramified case corresponds thus to two (or more) solutions that have the same initial term(s). As these solutions must be distinct (square-free hypothesis), they must be distinguished after a finite number of iterations. That is, one gets eventually a polynomial that is square free, and the computation can continue as in the regular case for each root of
As the iteration of the regular case does not increase the denominators of the exponents, This shows that the method provides all solutions as Puiseux series, that is, that the field of Puiseux series over the complex numbers is an algebraically closed field that contains the univariate polynomial ring with complex coefficients.
The Newton–Puiseux theorem is not valid over fields of positive characteristic. For example, the equation has solutions
and
(one readily checks on the first few terms that the sum and product of these two series are 1 and respectively; this is valid whenever the base fieldK has characteristic different from 2).
As the powers of 2 in the denominators of the coefficients of the previous example might lead one to believe, the statement of the theorem is not true in positive characteristic. The example of theArtin–Schreier equation shows this: reasoning with valuations shows thatX should have valuation, and if we rewrite it as then
and one shows similarly that should have valuation, and proceeding in that way one obtains the series
since this series makes no sense as a Puiseux series—because the exponents have unbounded denominators—the original equation has no solution. However, suchEisenstein equations are essentially the only ones not to have a solution, because, if is algebraically closed of characteristic, then the field of Puiseux series over is the perfect closure of the maximal tamelyramified extension of.[4]
Similarly to the case of algebraic closure, there is an analogous theorem forreal closure: if is a real closed field, then the field of Puiseux series over is the real closure of the field of formal Laurent series over.[5] (This implies the former theorem since any algebraically closed field of characteristic zero is the unique quadratic extension of some real-closed field.)
There is also an analogous result forp-adic closure: if is a-adically closed field with respect to a valuation, then the field of Puiseux series over is also-adically closed.[6]
Let be analgebraic curve[7] given by an affine equation over an algebraically closed field of characteristic zero, and consider a point on which we can assume to be. We also assume that is not the coordinate axis. Then aPuiseux expansion of (the coordinate of) at is a Puiseux series having positive valuation such that.
More precisely, let us define thebranches of at to be the points of thenormalization of which map to. For each such, there is a local coordinate of at (which is a smooth point) such that the coordinates and can be expressed as formal power series of, say (since is algebraically closed, we can assume the valuation coefficient to be 1) and: then there is a unique Puiseux series of the form (a power series in), such that (the latter expression is meaningful since is a well-defined power series in). This is a Puiseux expansion of at which is said to be associated to the branch given by (or simply, the Puiseux expansion of that branch of), and each Puiseux expansion of at is given in this manner for a unique branch of at.[8][9]
This existence of a formal parametrization of the branches of an algebraic curve or function is also referred to asPuiseux's theorem: it has arguably the same mathematical content as the fact that the field of Puiseux series is algebraically closed and is a historically more accurate description of the original author's statement.[10]
For example, the curve (whose normalization is a line with coordinate and map) has two branches at the double point (0,0), corresponding to the points and on the normalization, whose Puiseux expansions are and respectively (here, both are power series because the coordinate isétale at the corresponding points in the normalization). At the smooth point (which is in the normalization), it has a single branch, given by the Puiseux expansion (the coordinate ramifies at this point, so it is not a power series).
The curve (whose normalization is again a line with coordinate and map), on the other hand, has a single branch at thecusp point, whose Puiseux expansion is.
When is the field of complex numbers, the Puiseux expansion of an algebraic curve (as defined above) isconvergent in the sense that for a given choice of-th root of, they converge for small enough, hence define an analytic parametrization of each branch of in the neighborhood of (more precisely, the parametrization is by the-th root of).
The field of Puiseux series is notcomplete as ametric space. Its completion, called theLevi-Civita field, can be described as follows: it is the field of formal expressions of the form where the support of the coefficients (that is, the set ofe such that) is the range of an increasing sequence of rational numbers that either is finite or tends to. In other words, such series admit exponents of unbounded denominators, provided there are finitely many terms of exponent less than for any given bound. For example, is not a Puiseux series, but it is the limit of aCauchy sequence of Puiseux series; in particular, it is the limit of as. However, even this completion is still not "maximally complete" in the sense that it admits non-trivial extensions which are valued fields having the same value group and residue field,[11][12] hence the opportunity of completing it even more.
Hahn series are a further (larger) generalization of Puiseux series, introduced byHans Hahn in the course of the proof of hisembedding theorem in 1907 and then studied by him in his approach toHilbert's seventeenth problem. In a Hahn series, instead of requiring the exponents to have bounded denominator they are required to form awell-ordered subset of the value group (usually or). These were later further generalized byAnatoly Maltsev andBernhard Neumann to a non-commutative setting (they are therefore sometimes known asHahn–Mal'cev–Neumann series). Using Hahn series, it is possible to give a description of the algebraic closure of the field of power series in positive characteristic which is somewhat analogous to the field of Puiseux series.[13]
{{cite book}}:ISBN / Date incompatibility (help)