Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Pseudomonas putida

From Wikipedia, the free encyclopedia
Species of bacterium

Pseudomonas putida
Pseudomonas putida onKing's B agar.Pyoverdine, producedto collect iron from the environment, glows under UV light.
DIC image ofPseudomonas putida culture wet mount, 400X
Scientific classificationEdit this classification
Domain:Bacteria
Kingdom:Pseudomonadati
Phylum:Pseudomonadota
Class:Gammaproteobacteria
Order:Pseudomonadales
Family:Pseudomonadaceae
Genus:Pseudomonas
Species:
P. putida
Binomial name
Pseudomonas putida
Trevisan, 1889
Type strain
ATCC 12633

CCUG 12690
CFBP 2066
DSM 291
HAMBI 7
JCM 13063 and20120
LMG 2257
NBRC 14164
NCAIM B.01634
NCCB 72006 and 68020
NCTC 10936

Synonyms

Bacillus fluorescens putidus"Flügge 1886
Bacillus putidusTrevisan 1889
Pseudomonas eisenbergiiMigula 1900
Pseudomonas convexaChester 1901
Pseudomonas incognitaChester 1901
Pseudomonas ovalisChester 1901
Pseudomonas rugosa(Wright 1895) Chester 1901
Pseudomonas striataChester 1901
Pseudomonas mildenbergiiBergey,et al.
Arthrobacter siderocapsulatusDubinina and Zhdanov 1975
Pseudomonas arvillaO. Hayaishi
Pseudomonas barkeriRhodes
Pseudomonas cyanogenaHammer

Pseudomonas putida is aGram-negative, rod-shaped,saprophyticsoilbacterium.[1] It has a versatile metabolism and is amenable to genetic manipulation, making it a common organism used in research, bioremediation, and synthesis of chemicals and other compounds.

TheFood and Drug Administration (FDA) has listedP. putida strain KT2440 as Host-vector system safety level 1 certified (HV-1), indicating that it is safe to use without any extra precautions.[2] Thus, use ofP. putida in many research labs is preferable to some otherPseudomonas species, such asPseudomonas aeruginosa, for example, which is anopportunistic pathogen.[1]

History and phylogeny

[edit]

Based on 16SrRNA analysis,P. putida was taxonomically confirmed to be aPseudomonas species (sensu stricto) and placed, along with several other species, in theP. putida group, to which it lends its name.[3] However,phylogenomic analysis[4][5] of completegenomes from the entirePseudomonas genus clearly showed that the genomes that were named asP. putida did not form a monophyleticclade, but were dispersed and formed a wider evolutionary group (the putida group) that included other species as well, such asP. alkylphenolia,P. alloputida,P. monteilii,P. cremoricolorata,P. fulva,P. parafulva,P. entomophila,P. mosselii,P. plecoglossicida and several genomic species (new species which are not validly defined).[6]

A variety ofP. putida, called multiplasmid hydrocarbon-degradingPseudomonas, is the first patented organism in the world. Because it is a living organism, the patent was disputed and brought before theUnited States Supreme Court in the historic court caseDiamond v. Chakrabarty, which the inventor,Ananda Mohan Chakrabarty, won. It demonstrates a very diversemetabolism, including the ability to degrade organic solvents such astoluene.[7] This ability has been put to use inbioremediation, or the use of microorganisms to degrade environmental pollutants.

Genomics

[edit]

The protein count andGC content of the (63) genomes that belong to theP. putida wider evolutionary group (as defined by a phylogenomic analysis of 494 complete genomes from the entirePseudomonas genus) ranges between 3748–6780 (average: 5197) and between 58.7–64.4% (average: 62.3%), respectively.[5] The core proteome of the analyzed 63 genomes (of theP. putida group) comprised 1724 proteins, of which only 1 core protein was specific for this group, meaning that it was absent in all other analyzedPseudomonads.[5]

Repair and avoidance of DNA damage

[edit]

TheP. putidagenome specifies enzymes that repair oxidativeDNA damages (oxidizedguanine) during the stationary phase of growth thus avoidingmutagenesis.[8] Enzymes that participate in the removal of oxidized guanine in carbon-starvedP. putida DNA includeMutY glycosylase andMutM glycosylase.P. putida also specifies the enzyme MutT, apyrophosphohydrolase that converts 8-oxodGTP to 8-oxodGMP in order to prevent 8-oxodGTP from being used as a substrate by the replicative DNA polymerase.[8]

Uses

[edit]

Bioremediation

[edit]

The diverse metabolism of wild-type strains ofP. putida may be exploited for bioremediation; for example, it has been shown in the laboratory to function as asoil inoculant to remedynaphthalene-contaminated soils.[9]

Pseudomonas putida is capable of convertingstyrene oil into thebiodegradable plasticPHA.[10][11] This may be of use in the effectiverecycling ofpolystyrene foam, otherwise thought to be not biodegradable.

Biocontrol

[edit]

Pseudomonas putida has demonstrated potentialbiocontrol properties, as an effective antagonist of plant pathogens such asPythium aphanidermatum[12] andFusarium oxysporum f.sp.radicis-lycopersici.[13]

Oligonucleotide usage signatures of theP. alloputida KT2440 genome

[edit]

Di- topentanucleotide usage and the list of the most abundant octa- to tetradecanucleotides are useful measures of the bacterialgenomic signature. TheP. putida KT2440 chromosome is characterized by strand symmetry and intrastrand parity of complementary oligonucleotides. Each tetranucleotide occurs with similar frequency on the two strands. Tetranucleotide usage is biased by G+C content and physicochemical constraints such as base stacking energy, dinucleotide propeller twist angle, or trinucleotide bendability. The 105 regions with atypicaloligonucleotide composition can be differentiated by their patterns of oligonucleotide usage into categories of horizontally acquired gene islands, multidomain genes or ancient regions such as genes for ribosomal proteins and RNAs. A species-specific extragenicpalindromic sequence is the most common repeat in the genome that can be exploited for the typing ofP. putida strains. In the coding sequence ofP. putida, LLL is the most abundant tripeptide.[14] Phylogenomic analysis reclassified the strain KT2440 in a new speciesPseudomonas alloputida.[6]

Organic synthesis

[edit]

Pseudomonas putida's amenability to genetic manipulation has allowed it to be used in the synthesis of numerous organic pharmaceutical and agricultural compounds from various substrates.[15] A new all-inclusive plasmid forP. putida KT2440, was introduced in 2024. This broad host range plasmid (pBBR1MCS2) enables fast iterative genome editing. The method is based on the instability of the vector plasmid combined with the CRISPR/Cas9 system. By manipulating the conditions to be optimal for curing,P. putida is able to cure the vector within 8h. This is significantly faster than with previous methods and this cuts the duration of one edit down to 1.5 days from 4-5 days. Curing speed is relevant because it directly effects when the next edit can take place.[16]

CBB5 and caffeine consumption

[edit]

Pseudomonas putida CBB5, a nonengineered, wild-type variety found in soil, can live oncaffeine and has been observed to break caffeine down into carbon dioxide and ammonia.[17][18]

References

[edit]
  1. ^abWhitman, William B; Rainey, Fred; Kämpfer, Peter; Trujillo, Martha; Chun, Jonsik; DeVos, Paul; Hedlund, Brian; Dedysh, Svetlana, eds. (2015-04-17).Bergey's Manual of Systematics of Archaea and Bacteria (1 ed.). Wiley.doi:10.1002/9781118960608.gbm01210.ISBN 978-1-118-96060-8.
  2. ^Kampers, Linde F. C.; Volkers, Rita J. M.; Martins dos Santos, Vitor A. P. (2019-06-14)."Pseudomonas putida <scp>KT</scp> 2440 is <scp>HV</scp> 1 certified, not <scp>GRAS</scp>".Microbial Biotechnology.12 (5):845–848.doi:10.1111/1751-7915.13443.ISSN 1751-7915.PMC 6680625.PMID 31199068.
  3. ^Anzai; Kim, H; Park, JY; Wakabayashi, H; Oyaizu, H; et al. (Jul 2000). "Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence".Int J Syst Evol Microbiol.50 (4):1563–89.doi:10.1099/00207713-50-4-1563.PMID 10939664.
  4. ^Keshavarz-Tohid, Vahid; Vacheron, Jordan; Dubost, Audrey; Prigent-Combaret, Claire; Taheri, Parissa; Tarighi, Saeed; Taghavi, Seyed Mohsen; Moënne-Loccoz, Yvan; Muller, Daniel (2019-07-01)."Genomic, phylogenetic and catabolic re-assessment of the Pseudomonas putida clade supports the delineation of Pseudomonas alloputida sp. nov., Pseudomonas inefficax sp. nov., Pseudomonas persica sp. nov., and Pseudomonas shirazica sp. nov"(PDF).Systematic and Applied Microbiology.42 (4):468–480.Bibcode:2019SyApM..42..468K.doi:10.1016/j.syapm.2019.04.004.ISSN 0723-2020.PMID 31122691.S2CID 155282987.
  5. ^abcNikolaidis, Marios; Mossialos, Dimitris; Oliver, Stephen G.; Amoutzias, Grigorios D. (2020-07-24)."Comparative Analysis of the Core Proteomes among the Pseudomonas Major Evolutionary Groups Reveals Species-Specific Adaptations for Pseudomonas aeruginosa and Pseudomonas chlororaphis".Diversity.12 (8): 289.Bibcode:2020Diver..12..289N.doi:10.3390/d12080289.ISSN 1424-2818.
  6. ^abKeshavarz-Tohid; Vacheron, J; Dubost, A; Prigent-Combaret, C; Taheri, P; Tarighi, S; Taghavi, SM; Moënne-Loccoz, Y; Muller, D; et al. (May 2019)."Genomic, phylogenetic and catabolic re-assessment of thePseudomonas putida clade supports the delineation ofPseudomonas alloputida sp. nov.,Pseudomonas inefficax sp. nov.,Pseudomonas persica sp. nov., andPseudomonas shirazica sp. nov".Syst Appl Microbiol.42 (Pt 1):468–480.Bibcode:2019SyApM..42..468K.doi:10.1016/j.syapm.2019.04.004.PMID 31122691.S2CID 155282987.
  7. ^Marqués, Silvia; Ramos, Juan L. (1993). "Transcriptional control of the Pseudomonas putida TOL plasmid catabolic pathways".Molecular Microbiology.9 (5):923–9.doi:10.1111/j.1365-2958.1993.tb01222.x.PMID 7934920.S2CID 20663917.
  8. ^abSaumaa S, Tover A, Tark M, Tegova R, Kivisaar M (August 2007)."Oxidative DNA damage defense systems in avoidance of stationary-phase mutagenesis in Pseudomonas putida".J Bacteriol.189 (15):5504–14.doi:10.1128/JB.00518-07.PMC 1951809.PMID 17545288.
  9. ^Gomes, NC; Kosheleva, IA; Abraham, WR; Smalla, K (2005)."Effects of the inoculant strain Pseudomonas putida KT2442 (pNF142) and of naphthalene contamination on the soil bacterial community".FEMS Microbiology Ecology.54 (1):21–33.Bibcode:2005FEMME..54...21G.doi:10.1016/j.femsec.2005.02.005.PMID 16329969.
  10. ^Britt, Robert Roy (March 7, 2006)."Immortal Polystyrene Foam Meets its Enemy".livescience.com.Archived from the original on November 4, 2021. RetrievedNovember 4, 2021.
  11. ^Ward, PG; Goff, M; Donner, M; Kaminsky, W; O'Connor, KE (2006). "A two step chemo-biotechnological conversion of polystyrene to a biodegradable thermoplastic".Environmental Science & Technology.40 (7):2433–7.Bibcode:2006EnST...40.2433W.doi:10.1021/es0517668.PMID 16649270.
  12. ^Amer, GA; Utkhede, RS (2000). "Development of formulations of biological agents for management of root rot of lettuce and cucumber".Canadian Journal of Microbiology.46 (9):809–16.doi:10.1139/w00-063.PMID 11006841.
  13. ^Validov, S; Kamilova, F; Qi, S; Stephan, D; Wang, JJ; Makarova, N; Lugtenberg, B (2007). "Selection of bacteria able to control Fusarium oxysporum f. Sp. Radicis-lycopersici in stonewool substrate".Journal of Applied Microbiology.102 (2):461–71.doi:10.1111/j.1365-2672.2006.03083.x.PMID 17241352.S2CID 3098008.
  14. ^Cornelis, Pierre, ed. (2008).Pseudomonas: Genomics and Molecular Biology (1st ed.). Caister Academic Press.ISBN 978-1-904455-19-6.Archived from the original on 2016-09-12. Retrieved2007-09-24.
  15. ^Poblete-Castro, Ignacio; Becker, Judith; Dohnt, Katrin; dos Santos, Vitor Martins; Wittmann, Christoph (March 2012)."Industrial biotechnology of Pseudomonas putida and related species".Applied Microbiology and Biotechnology.93 (6):2279–2290.doi:10.1007/s00253-012-3928-0.hdl:10033/246536.ISSN 0175-7598.PMID 22350258.S2CID 253775454.Archived from the original on 2023-03-15. Retrieved2023-02-19.
  16. ^Wen, Qifeng (2024)."A single-plasmid-based, easily curable CRISPR/ Cas9 system for rapid, iterative genome editing in Pseudomonas putida KT2440".Microbial Cell Factories.23 (349) – via Springer Nature Live.
  17. ^Harmon, Katherine."Newly Discovered Bacteria Lives on Caffeine".Scientific American Blog Network.Archived from the original on 2021-11-04. Retrieved2021-11-04.
  18. ^Summers, RM; Louie, TM; Yu, CL; Subramanian, M (2011)."Characterization of a broad-specificity non-haem iron N-demethylase from Pseudomonas putida CBB5 capable of utilizing several purine alkaloids as sole carbon and nitrogen source".Microbiology.157 (Pt 2):583–92.doi:10.1099/mic.0.043612-0.PMID 20966097.

External links

[edit]
Pseudomonas putida
Retrieved from "https://en.wikipedia.org/w/index.php?title=Pseudomonas_putida&oldid=1335462891"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp