Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Pseudomonas

From Wikipedia, the free encyclopedia
Genus of Gram-negative bacteria

Pseudomonas
P. aeruginosa colonies on anagar plate
Scientific classificationEdit this classification
Domain:Bacteria
Kingdom:Pseudomonadati
Phylum:Pseudomonadota
Class:Gammaproteobacteria
Order:Pseudomonadales
Family:Pseudomonadaceae
Genus:Pseudomonas
Migula 1894
Type species
Pseudomonas aeruginosa
Species

See text.

Synonyms
  • "Stutzerimonas"Lalucat et al. 2022[1]
  • FlavimonasHolmes et al. 1987
  • ChryseomonasHolmes et al. 1986
  • SerpensHespell 1977 (Approved Lists 1980)

Pseudomonas is agenus ofGram-negative bacteria belonging to the familyPseudomonadaceae in the classGammaproteobacteria. The 348 members of the genus[2][3] demonstrate a great deal ofmetabolic diversity and consequently are able to colonize a wide range of niches and hosts.[4][5][6][7][8] Their ease of culturein vitro and availability of an increasing number ofPseudomonas straingenome sequences has made the genus an excellent focus for scientific research; the best studied species includeP. aeruginosa in its role as an opportunistichuman pathogen, the plant pathogenP. syringae, the soil bacteriumP. putida, and the plant growth-promotingP. fluorescens,P. lini,P. migulae, andP. graminis.[9][10]

Because of their widespread occurrence in water and plant seeds such asdicots, thepseudomonads were observed early in the history ofmicrobiology. The generic namePseudomonas created for these organisms was defined in rather vague terms byWalter Migula in 1894 and 1900 as a genus of Gram-negative, rod-shaped, and polar-flagellated bacteria with some sporulating species.[11][12] The latter statement was later proved incorrect and was due to refractive granules of reserve materials.[13] Despite the vague description, the type species,Pseudomonas pyocyanea (basionym ofPseudomonas aeruginosa), proved the best descriptor.[13]

Classification history

[edit]

Like most bacterial genera, the pseudomonad[note 1]last common ancestor lived hundreds of millions of years ago. They were initially classified at the end of the 19th century when first identified byWalter Migula. The etymology of the name was not specified at the time and first appeared in the seventh edition ofBergey's Manual of Systematic Bacteriology (the main authority in bacterial nomenclature) asGreekpseudes(ψευδής) "false" and-monas (μονάς/μονάδος) "a single unit", which can mean false unit; however, Migula possibly intended it as falseMonas, a nanoflagellated protist[13] (subsequently, the term "monad" was used in the early history of microbiology to denote unicellular organisms). Soon, other species matching Migula's somewhat vague original description were isolated from many natural niches and, at the time, many were assigned to thegenus. However, many strains have since been reclassified, based on more recent methodology and use of approaches involving studies of conservative macromolecules.[14]

16S rRNA sequence analysis has redefined the taxonomy of many bacterial species.[15] As a result, the genusPseudomonas includes strains formerly classified in the generaChryseomonas andFlavimonas.[16] Other strains previously classified in the genusPseudomonas are now classified in the generaBurkholderia andRalstonia.[17][18]

In 2020, a phylogenomic analysis of 494 completePseudomonas genomes identified two well-defined species (P. aeruginosa andP. chlororaphis) and four wider phylogenetic groups (P. fluorescens, P. stutzeri, P. syringae, P. putida) with a sufficient number of available proteomes.[19] The four wider evolutionary groups include more than one species, based on species definition by the Average Nucleotide Identity levels.[20] In addition, the phylogenomic analysis identified several strains that were mis-annotated to the wrong species or evolutionary group.[19] This mis-annotation problem has been reported by other analyses as well.[21] In 2021, a broad phylogenomic analysis on this genus led to the reorganization of the species included inPseudomonas, leading to the creation of several new genera to accommodate some of them.[22]

Genomics

[edit]

In 2000, the completegenome sequence of aPseudomonas species was determined; more recently, the sequence of other strains has been determined, includingP. aeruginosa strains PAO1 (2000),P. putida KT2440 (2002),P. protegens Pf-5 (2005),P. syringae pathovar tomato DC3000 (2003),P. syringae pathovar syringae B728a (2005),P. syringae pathovar phaseolica 1448A (2005),P. fluorescens Pf0-1, andP. entomophila L48.[14]

By 2016, more than 400 strains ofPseudomonas had been sequenced.[23] Sequencing the genomes of hundreds of strains revealed highly divergent species within the genus. In fact, many genomes ofPseudomonas share only 50–60% of their genes, e.g.P. aeruginosa andP. putida share only 2971 proteins out of 5350 (or ~55%).[23]

By 2020, more than 500 completePseudomonas genomes were available inNCBI GenBank. A phylogenomic analysis utilized 494 complete proteomes and identified 297 core orthologues, shared by all strains.[19] This set of core orthologues at the genus level was enriched for proteins involved in metabolism, translation, and transcription and was utilized for generating a phylogenomic tree of the entire genus, to delineate the relationships among thePseudomonas major evolutionary groups.[19] In addition, group-specific core proteins were identified for most evolutionary groups, meaning that they were present in all members of the specific group, but absent in other pseudomonads. For example, severalP. aeruginosa-specific core proteins were identified that are known to play an important role in this species' pathogenicity, such asCntL, CntM, PlcB, Acp1, MucE, SrfA, Tse1, Tsi2, Tse3, andEsrC.[19]

In 2021, a comparative genomic study with more than 3000Pseudomonas genomes helped to discover genes and functions related with the environmental adaptation of these bacteria.[8]

Characteristics

[edit]

Members of the genus display these defining characteristics:[24]

Other characteristics that tend to be associated withPseudomonas species (with some exceptions) include secretion ofpyoverdine, afluorescent yellow-greensiderophore[25] under iron-limiting conditions. CertainPseudomonas species may also produce additional types of siderophore, such aspyocyanin byPseudomonas aeruginosa[26] and thioquinolobactin byPseudomonas fluorescens.[27]Pseudomonas species also typically give a positive result to theoxidase test, the absence of gas formation from glucose, glucose is oxidised in oxidation/fermentation test using Hugh and Leifson O/F test, betahemolytic (onblood agar),indole negative,methyl red negative,Voges–Proskauer test negative, andcitrate positive.[citation needed]

Pseudomonas may be the most common nucleator of ice crystals in clouds, thereby being of utmost importance to the formation of snow and rain around the world.[28]

The genusPseudomonas is recognized for its remarkable metabolic diversity, enabling it to thrive in a wide range of environments. These bacteria produce a vast array ofsecondary metabolites,[29] including antibiotics, siderophores, and biosurfactants, which contribute to their ecological versatility and biotechnological potential.

Biofilm formation

[edit]

Allspecies and strains ofPseudomonas have historically been classified asstrict aerobes. Exceptions to this classification have recently been discovered inPseudomonasbiofilms.[30] A significant number of cells can produce exopolysaccharides associated with biofilm formation. Secretion ofexopolysaccharides such as alginate makes it difficult for pseudomonads to bephagocytosed by mammalianwhite blood cells.[31] Exopolysaccharide production also contributes to surface-colonisingbiofilms that are difficult to remove from food preparation surfaces. Growth of pseudomonads on spoiling foods can generate a "fruity" odor.[citation needed]

Antibiotic resistance

[edit]

MostPseudomonas spp. are naturally resistant topenicillin and the majority of relatedbeta-lactam antibiotics, but a number are sensitive topiperacillin,imipenem,ticarcillin, orciprofloxacin.[31] Aminoglycosides such astobramycin,gentamicin, andamikacin are other choices for therapy.[citation needed]

This ability to thrive in harsh conditions is a result of their hardycell walls that contain proteins known asporins. Their resistance to most antibiotics is attributed toefflux pumps, which pump out some antibiotics before they are able to act.[citation needed]

Pseudomonas aeruginosa is increasingly recognized as an emergingopportunistic pathogen of clinical relevance. One of its most worrying characteristics is its low antibiotic susceptibility.[32] This low susceptibility is attributable to a concerted action of multidrug efflux pumps with chromosomally encodedantibiotic resistance genes (e.g.,mexAB-oprM,mexXY, etc.[33]) and the low permeability of the bacterial cellular envelopes. Besides intrinsic resistance,P. aeruginosa easily develops acquired resistance either bymutation in chromosomally encoded genes or by thehorizontal gene transfer of antibiotic resistance determinants. Development ofmultidrug resistance byP. aeruginosa isolates requires several different genetic events that include acquisition of different mutations and/or horizontal transfer of antibiotic resistance genes. Hypermutation favours the selection of mutation-driven antibiotic resistance inP. aeruginosa strains producing chronic infections, whereas the clustering of several different antibiotic resistance genes inintegrons favours the concerted acquisition of antibiotic resistance determinants. Some recent studies have shown phenotypic resistance associated tobiofilm formation or to the emergence of small-colony-variants, which may be important in the response ofP. aeruginosa populations toantibiotic treatment.[14]

Sensitivity to gallium

[edit]

Althoughgallium has no natural function in biology, gallium ions interact with cellular processes in a manner similar to iron(III). When gallium ions are mistakenly taken up in place of iron(III) by bacteria such asPseudomonas, the ions interfere with respiration, and the bacteria die. This happens because iron is redox-active, allowing the transfer of electrons during respiration, while gallium is redox-inactive.[34][35]

Pathogenicity

[edit]

Animal pathogens

[edit]
Main article:Pseudomonas infection

Infectious species includeP. aeruginosa,P. oryzihabitans, andP. plecoglossicida.P. aeruginosa flourishes in hospital environments, and is a particular problem in this environment, since it is the second-most common infection in hospitalized patients (nosocomial infections).[36] This pathogenesis may in part be due to the proteins secreted byP. aeruginosa. The bacterium possesses a wide range ofsecretion systems, which export numerous proteins relevant to the pathogenesis of clinical strains.[37] Intriguingly, several genes involved in the pathogenesis ofP. aeruginosa, such asCntL, CntM, PlcB, Acp1, MucE, SrfA, Tse1, Tsi2, Tse3, andEsrC are core group-specific,[19] meaning that they are shared by the vast majority ofP. aeruginosa strains, but they are not present in otherPseudomonads.

Plant pathogens

[edit]

P. syringae is a prolificplant pathogen. It exists as over 50 differentpathovars, many of which demonstrate a high degree of host-plant specificity. Numerous otherPseudomonas species can act as plant pathogens, notably all of the other members of theP. syringae subgroup, butP. syringae is the most widespread and best-studied.[citation needed]

Fungus pathogens

[edit]

P. tolaasii can be a major agricultural problem, as it can cause bacterial blotch of cultivatedmushrooms.[38] Similarly,P. agarici can cause drippy gill in cultivated mushrooms.[39]

Use as biocontrol agents

[edit]

Since the mid-1980s, certain members of the genusPseudomonas have been applied to cereal seeds or applied directly to soils as a way of preventing the growth or establishment of crop pathogens. This practice is generically referred to asbiocontrol. The biocontrol properties ofP. fluorescens andP. protegens strains (CHA0 or Pf-5 for example) are currently best-understood, although it is not clear exactly how the plant growth-promoting properties ofP. fluorescens are achieved. Theories include: the bacteria might induce systemic resistance in the host plant, so it can better resist attack by a true pathogen; the bacteria might outcompete other (pathogenic) soil microbes, e.g. bysiderophores giving a competitive advantage at scavenging for iron; the bacteria might produce compounds antagonistic to other soil microbes, such asphenazine-type antibiotics orhydrogen cyanide. Experimental evidence supports all of these theories.[40]

Other notablePseudomonas species with biocontrol properties includeP. chlororaphis, which produces aphenazine-typeantibiotic active agent against certainfungal plant pathogens,[41] and the closely related speciesP. aurantiaca, which producesdi-2,4-diacetylfluoroglucylmethane, a compoundantibiotically active againstGram-positive organisms.[42]

Use as bioremediation agents

[edit]

Some members of the genus are able to metabolise chemical pollutants in the environment, and as a result, can be used forbioremediation. Notable species demonstrated as suitable for use as bioremediation agents include:

Risks associated with pseudomonas

[edit]

Pseudomonas is a genus of bacteria known to be associated with several diseases affecting humans, plants, and animals.

Humans & Animals

[edit]

One of the most concerning strains ofPseudomonas isPseudomonas aeruginosa, which is responsible for a considerable number of hospital-acquired infections. Numerous hospitals and medical facilities face persistent challenges in dealing withPseudomonas infections. The symptoms of these infections are caused by proteins secreted by the bacteria and may includepneumonia,blood poisoning, andurinary tract infections.[52]Pseudomonas aeruginosa is highly contagious and has displayed resistance to antibiotic treatments, making it difficult to manage effectively. Some strains ofPseudomonas are known to targetwhite blood cells in variousmammal species, posing risks to humans, cattle, sheep, and dogs alike.[53]

Fish

[edit]

WhilePseudomonas aeruginosa seems to be a pathogen that primarily affects humans, another strain known asPseudomonas plecoglossicida poses risks to fish. This strain can cause gastric swelling and haemorrhaging in fish populations.[53]

Plants & Fungi

[edit]

Various strains ofPseudomonas are recognized as pathogens in the plant kingdom. Notably, thePseudomonas syringae family is linked to diseases affecting a wide range of agricultural plants, with different strains showing adaptations to specific host species. In particular, the virulent strainPseudomonas tolaasii is responsible for causing blight and degradation in edible mushroom species.[53]

Detection of food spoilage agents in milk

[edit]

One way of identifying and categorizing multiple bacterial organisms in a sample is to use ribotyping.[54] In ribotyping, differing lengths of chromosomal DNA are isolated from samples containing bacterial species, and digested into fragments.[54] Similar types of fragments from differing organisms are visualized and their lengths compared to each other by Southern blotting or by the much faster method ofpolymerase chain reaction (PCR).[54] Fragments can then be matched with sequences found on bacterial species.[54] Ribotyping is shown to be a method to isolate bacteria capable of spoilage.[55] Around 51% ofPseudomonas bacteria found in dairy processing plants areP. fluorescens, with 69% of these isolates possessing proteases, lipases, and lecithinases which contribute to degradation of milk components and subsequent spoilage.[55] OtherPseudomonas species can possess any one of the proteases, lipases, or lecithinases, or none at all.[55] Similar enzymatic activity is performed byPseudomonas of the same ribotype, with each ribotype showing various degrees of milk spoilage and effects on flavour.[55] The number of bacteria affects the intensity of spoilage, with non-enzymaticPseudomonas species contributing to spoilage in high number.[55]

Food spoilage is detrimental to the food industry due to production of volatile compounds from organisms metabolizing the various nutrients found in the food product.[56] Contamination results in health hazards from toxic compound production as well as unpleasant odours and flavours.[56] Electronic nose technology allows fast and continuous measurement of microbial food spoilage by sensing odours produced by these volatile compounds.[56] Electronic nose technology can thus be applied to detect traces ofPseudomonas milk spoilage and isolate the responsiblePseudomonas species.[57] The gas sensor consists of a nose portion made of 14 modifiable polymer sensors that can detect specific milk degradation products produced by microorganisms.[57] Sensor data is produced by changes in electric resistance of the 14 polymers when in contact with its target compound, while four sensor parameters can be adjusted to further specify the response.[57] The responses can then be pre-processed by a neural network which can then differentiate between milk spoilage microorganisms such asP. fluorescens andP. aureofaciens.[57]

Species

[edit]

Pseudomonas comprises the following species,[58] organized into genomic affinity groups:[59][60][61][62][63][64][65]

P. aeruginosa Group

[edit]

P. anguilliseptica Group

[edit]

P. fluorescens Group

[edit]

P. asplenii Subgroup

P. chlororaphis Subgroup

P. corrugata Subgroup

P. fluorescens Subgroup

P. fragi Subgroup

P. gessardii Subgroup

P. jessenii Subgroup

P. koreensis Subgroup

P. mandelii Subgroup

P. protegens Subgroup

incertae sedis

P. linyingensis Group

[edit]

P. lutea Group

[edit]

P. massiliensis Group

[edit]

P. oleovorans Group

[edit]

P. oryzihabitans Group

[edit]

P. pohangensis Group

[edit]

P. putida Group

[edit]

P. resinovorans Group

[edit]

P. rhizosphaerae Group

[edit]

P. straminea Group

[edit]

P. stutzeri Group

[edit]

P. syringae Group

[edit]

incertae sedis

[edit]

Species previously classified in the genus

[edit]

Recently,16S rRNA sequence analysis redefined the taxonomy of many bacterial species previously classified as being in the genusPseudomonas.[15] Species removed fromPseudomonas are listed below; clicking on a species will show its new classification. The term 'pseudomonad' does not apply strictly to just the genusPseudomonas, and can be used to also include previous members such as the generaBurkholderia andRalstonia.

α proteobacteria:P. abikonensis,P. aminovorans,P. azotocolligans,P. carboxydohydrogena,P. carboxidovorans,P. compransoris,P. diminuta,P. echinoides,P. extorquens,P. lindneri,P. mesophilica,P. paucimobilis,P. radiora,P. rhodos,P. riboflavina,P. rosea,P. vesicularis.

β proteobacteria:P. acidovorans,P. alliicola,P. antimicrobica,P. avenae,P. butanovora,P. caryophylli,P. cattleyae,P. cepacia,P. cocovenenans,P. delafieldii,P. facilis,P. flava,P. gladioli,P. glathei,P. glumae,P. huttiensis,P. indigofera,P. lanceolata,P. lemoignei,B. mallei,P. mephitica,P. mixta,P. palleronii,P. phenazinium,P. pickettii,P. plantarii,P. pseudoflava,B. pseudomallei,P. pyrrocinia,P. rubrilineans,P. rubrisubalbicans,P. saccharophila,P. solanacearum,P. spinosa,P. syzygii,P. taeniospiralis,P. terrigena,P. testosteroni.

γ-β proteobacteria:P. boreopolis,P. cissicola,P. geniculata,P. hibiscicola,P. maltophilia,P. pictorum.

γ proteobacteria:P. beijerinckii,P. diminuta,P. doudoroffii,P. elongata,P. flectens,P. marinus,P. halophila,P. iners,P. marina,P. nautica,P. nigrifaciens,P. pavonacea,[66]P. piscicida,P. stanieri.

δ proteobacteria:P. formicans.

Phylogenetics

[edit]

The following relationships between genomic affinity groups have been determined byphylogenetic analysis:[67][68]

Bacteriophages

[edit]

There are a number ofbacteriophages that infectPseudomonas, e.g.

See also

[edit]

Footnotes

[edit]
  1. ^To aid in the flow of the prose in English, genus names can be"trivialised" to form avernacular name to refer to a member of the genus: for the genusPseudomonas it is "pseudomonad" (plural: "pseudomonads"), a variant on the non-nominative cases in theGreek declension ofmonas, monada.[74] For historical reasons, members of several genera that were formerly classified asPseudomonas species can be referred to as pseudomonads, while the term "fluorescent pseudomonad" refers strictly to current members of the genusPseudomonas, as these producepyoverdin, a fluorescentsiderophore.[4][page needed] The latter term, fluorescent pseudomonad, is distinct from the termP. fluorescens group, which is used to distinguish a subset of members of thePseudomonas sensu stricto and not as a whole

References

[edit]
  1. ^Lalucat, Jorge; Gomila, Margarita; Mulet, Magdalena; Zaruma, Anderson; García-Valdés, Elena (2021). "Past, present and future of the boundaries of thePseudomonas genus: Proposal ofStutzerimonas gen. nov".Syst Appl Microbiol.45 (1) 126289.doi:10.1016/j.syapm.2021.126289.hdl:10261/311157.PMID 34920232.S2CID 244943909.
  2. ^Parte, Aidan C.; Sardà Carbasse, Joaquim; Meier-Kolthoff, Jan P.; Reimer, Lorenz C.; Göker, Markus (2020)."List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ".International Journal of Systematic and Evolutionary Microbiology.70 (11):5607–5612.doi:10.1099/ijsem.0.004332.PMC 7723251.PMID 32701423.
  3. ^"GenusPseudomonas".LPSN.dsmz.de. Retrieved16 January 2025. Partial citation, seeParte et al., 2020 for project reference
  4. ^abMadigan M; Martinko J, eds. (2006).Brock Biology of Microorganisms (11th ed.). Prentice Hall.ISBN 0-13-144329-1.
  5. ^Saati-Santamaría, Zaki; Rivas, Raúl; Kolařik, Miroslav; García-Fraile, Paula (2021-02-19)."A New Perspective of Pseudomonas—Host Interactions: Distribution and Potential Ecological Functions of the Genus Pseudomonas within the Bark Beetle Holobiont".Biology.10 (2): 164.doi:10.3390/biology10020164.ISSN 2079-7737.PMC 7922261.PMID 33669823.
  6. ^Spiers, Andrew J.; Buckling, Angus; Rainey, Paul B. (2000-10-01)."The causes of Pseudomonas diversity".Microbiology.146 (10):2345–2350.doi:10.1099/00221287-146-10-2345.ISSN 1350-0872.PMID 11021911.
  7. ^Crone, Stephanie; Vives-Flórez, Martha; Kvich, Lasse; Saunders, Aaron M.; Malone, Matthew; Nicolaisen, Mette H.; Martínez-García, Esteban; Rojas-Acosta, Catalina; Catalina Gomez-Puerto, Maria; Calum, Henrik; Whiteley, Marvin; Kolter, Roberto; Bjarnsholt, Thomas (2019-12-18). "The environmental occurrence ofPseudomonas aeruginosa".APMIS.128 (3):220–231.doi:10.1111/apm.13010.ISSN 0903-4641.PMID 31709616.
  8. ^abSaati-Santamaría, Zaki; Baroncelli, Riccardo; Rivas, Raúl; García-Fraile, Paula (2022-12-21)."Comparative Genomics of the Genus Pseudomonas Reveals Host- and Environment-Specific Evolution".Microbiology Spectrum.10 (6): e0237022.doi:10.1128/spectrum.02370-22.ISSN 2165-0497.PMC 9769992.PMID 36354324.
  9. ^Padda, Kiran Preet; Puri, Akshit; Chanway, Chris (2019-11-01)."Endophytic nitrogen fixation – a possible 'hidden' source of nitrogen for lodgepole pine trees growing at unreclaimed gravel mining sites".FEMS Microbiology Ecology.95 (11) fiz172.doi:10.1093/femsec/fiz172.ISSN 0168-6496.PMID 31647534.
  10. ^Padda, Kiran Preet; Puri, Akshit; Chanway, Chris P. (2018-09-20). "Isolation and identification of endophytic diazotrophs from lodgepole pine trees growing at unreclaimed gravel mining pits in central interior British Columbia, Canada".Canadian Journal of Forest Research.48 (12):1601–1606.Bibcode:2018CaJFR..48.1601P.doi:10.1139/cjfr-2018-0347.hdl:1807/92505.ISSN 0045-5067.S2CID 92275030.
  11. ^Migula, W. (1894) Über ein neues System der Bakterien. Arb Bakteriol Inst Karlsruhe 1: 235–238.
  12. ^Migula, W. (1900) System der Bakterien, Vol. 2. Jena, Germany: Gustav Fischer.
  13. ^abcPalleroni, N. J. (2010)."The Pseudomonas Story".Environmental Microbiology.12 (6):1377–1383.Bibcode:2010EnvMi..12.1377P.doi:10.1111/j.1462-2920.2009.02041.x.PMID 20553550.
  14. ^abcCornelis, Pierre, ed. (2008).Pseudomonas: Genomics and Molecular Biology (1st ed.). Caister Academic Press.ISBN 978-1-904455-19-6.
  15. ^abAnzai, Y.; Kim, H.; Park, J. Y.; Wakabayashi, H. (2000). "Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence".International Journal of Systematic and Evolutionary Microbiology.50 (4):1563–89.doi:10.1099/00207713-50-4-1563.PMID 10939664.
  16. ^Anzai, Yojiro; Kudo, Yuko; Oyaizu, Hiroshi (1997)."The phylogeny of the generaChryseomonas,Flavimonas, andPseudomonas supports synonymy of these three genera".International Journal of Systematic Bacteriology.47 (2):249–251.doi:10.1099/00207713-47-2-249.PMID 9103607.
  17. ^Yabuuchi, Eiko; Kosako, Yoshimasa; Oyaizu, Hiroshi; Yano, Ikuya; Hotta, Hisako; Hashimoto, Yasuhiro; Ezaki, Takayuki; Arakawa, Michio (1992)."Proposal ofBurkholderia gen. Nov. And transfer of seven species of the genusPseudomonas homology group II to the new genus, with the type speciesBurkholderia cepacia (Palleroni and Holmes 1981) comb. Nov".Microbiology and Immunology.36 (12):1251–1275.doi:10.1111/j.1348-0421.1992.tb02129.x.PMID 1283774.S2CID 46648461.
  18. ^Yabuuchi, Eiko; Kosako, Yoshimasa; Yano, Ikuya; Hotta, Hisako; Nishiuchi, Yukiko (1995)."Transfer of two Burkholderia and an Alcaligenes species to Ralstonia gen. Nov.: Proposal of Ralstonia pickettii (Ralston, Palleroni and Doudoroff 1973) comb. Nov., Ralstonia solanacearum (Smith 1896) comb. Nov. And Ralstonia eutropha (Davis 1969) comb. Nov".Microbiology and Immunology.39 (11):897–904.doi:10.1111/j.1348-0421.1995.tb03275.x.PMID 8657018.S2CID 28187828.
  19. ^abcdefNikolaidis, Marios; Mossialos, Dimitris; Oliver, Stephen G.; Amoutzias, Grigorios D. (2020-07-24)."Comparative Analysis of the Core Proteomes among thePseudomonas Major Evolutionary Groups Reveals Species-Specific Adaptations forPseudomonas aeruginosa andPseudomonas chlororaphis".Diversity.12 (8): 289.Bibcode:2020Diver..12..289N.doi:10.3390/d12080289.ISSN 1424-2818.
  20. ^Richter, Michael; Rosselló-Móra, Ramon (2009-11-10)."Shifting the genomic gold standard for the prokaryotic species definition".Proceedings of the National Academy of Sciences.106 (45):19126–19131.Bibcode:2009PNAS..10619126R.doi:10.1073/pnas.0906412106.ISSN 0027-8424.PMC 2776425.PMID 19855009.
  21. ^Tran, Phuong N.; Savka, Michael A.; Gan, Han Ming (2017-07-12)."In-silico Taxonomic Classification of 373 Genomes Reveals Species Misidentification and New Genospecies within the GenusPseudomonas".Frontiers in Microbiology.8 1296.doi:10.3389/fmicb.2017.01296.ISSN 1664-302X.PMC 5506229.PMID 28747902.
  22. ^Saati-Santamaría, Zaki; Peral-Aranega, Ezequiel; Velázquez, Encarna; Rivas, Raúl; García-Fraile, Paula (2021-08-16)."Phylogenomic Analyses of the Genus Pseudomonas Lead to the Rearrangement of Several Species and the Definition of New Genera".Biology.10 (8): 782.doi:10.3390/biology10080782.ISSN 2079-7737.PMC 8389581.PMID 34440014.
  23. ^abKoehorst, Jasper J.; Dam, Jesse C. J.; van Heck, Ruben G. A.; van Saccenti, Edoardo; Martins dos Santos, Vitor A. P.; Suarez-Diez, Maria; Schaap, Peter J. (2016-12-06)."Comparison of 432Pseudomonas strains through integration of genomic, functional, metabolic and expression data".Scientific Reports.6 (1) 38699.Bibcode:2016NatSR...638699K.doi:10.1038/srep38699.ISSN 2045-2322.PMC 5138606.PMID 27922098.
  24. ^Krieg, Noel (1984).Bergey's Manual of Systematic Bacteriology, Volume 1. Baltimore: Williams & Wilkins.ISBN 0-683-04108-8.
  25. ^Meyer, Jean-Marie; Geoffroy, Valérie A.; Baida, Nader; Gardan, Louis; Izard, Daniel; Lemanceau, Philippe; Achouak, Wafa; Palleroni, Norberto J. (2002)."Siderophore typing, a powerful tool for the identification of fluorescent and nonfluorescent pseudomonads".Applied and Environmental Microbiology.68 (6):2745–2753.Bibcode:2002ApEnM..68.2745M.doi:10.1128/AEM.68.6.2745-2753.2002.PMC 123936.PMID 12039729.
  26. ^Lau, Gee W.; Hassett, Daniel J.; Ran, Huimin; Kong F, Fansheng (2004). "The role of pyocyanin in Pseudomonas aeruginosa infection".Trends in Molecular Medicine.10 (12):599–606.doi:10.1016/j.molmed.2004.10.002.PMID 15567330.
  27. ^Matthijs, Sandra; Tehrani, Kourosch Abbaspour; Laus, George; Jackson, Robert W.; Cooper, Richard M.; Cornelis, Pierre (2007). "Thioquinolobactin, a Pseudomonas siderophore with antifungal and anti-Pythium activity".Environmental Microbiology.9 (2):425–434.Bibcode:2007EnvMi...9..425M.doi:10.1111/j.1462-2920.2006.01154.x.PMID 17222140.
  28. ^Biello, David (February 28, 2008)."Do Microbes Make Snow?".Scientific American.
  29. ^Saati-Santamaría, Zaki; Selem-Mojica, Nelly; Peral-Aranega, Ezequiel; Rivas, Raúl; García-Fraile, Paula (2022-02-23)."Unveiling the genomic potential of Pseudomonas type strains for discovering new natural products".Microbial Genomics.8 (2).doi:10.1099/mgen.0.000758.hdl:10366/154259.ISSN 2057-5858.PMC 8942027.PMID 35195510.
  30. ^Hassett, Daniel J.; Cuppoletti, John; Trapnell, Bruce; Lymar, Sergei V.; et al. (2002). "Anaerobic metabolism and quorum sensing byPseudomonas aeruginosa biofilms in chronically infected cystic fibrosis airways: rethinking antibiotic treatment strategies and drug targets".Advanced Drug Delivery Reviews.54 (11):1425–1443.doi:10.1016/S0169-409X(02)00152-7.PMID 12458153.
  31. ^abRyan, Kenneth J.; Ray, C. George; Sherris, John C., eds. (2004).Sherris Medical Microbiology (4th ed.). McGraw Hill.ISBN 0-8385-8529-9.
  32. ^Van Eldere, Johan (February 2003)."Multicentre surveillance ofPseudomonas aeruginosa susceptibility patterns in nosocomial infections".Journal of Antimicrobial Chemotherapy.51 (2):347–352.doi:10.1093/jac/dkg102.PMID 12562701.
  33. ^Poole, K (January 2004)."Efflux-mediated multiresistance in Gram-negative bacteria".Clinical Microbiology and Infection.10 (1):12–26.doi:10.1111/j.1469-0691.2004.00763.x.PMID 14706082.
  34. ^"Scientists Discover Clays to Fight Deadly Bacteria".www.infoniac.com. 2007-03-16. Retrieved2008-11-20.
  35. ^Smith, Michael (2007-03-16)."Gallium May Have Antibiotic-Like Properties".MedPage Today. Archived fromthe original on 2008-09-18.
  36. ^Bodey, Gerald P.; Bolivar, Ricardo; Fainstein, Victor; Jadeja, Leena (1983-03-01). "Infections Caused byPseudomonas aeruginosa".Clinical Infectious Diseases.5 (2):279–313.doi:10.1093/clinids/5.2.279.ISSN 1058-4838.PMID 6405475.
  37. ^Hardie, Kim R.; Pommier, Stephanie; Wilhelm, Susanne (2009). "The Secreted Proteins ofPseudomonas aeruginosa: Their Export Machineries, and How They Contribute to Pathogenesis".Bacterial Secreted Proteins: Secretory Mechanisms and Role in Pathogenesis. Caister Academic Press.ISBN 978-1-904455-42-4.
  38. ^Brodey, Catherine L.; Rainey, Paul B.; Tester, Mark; Johnstone, Keith (1991). "Bacterial blotch disease of the cultivated mushroom is caused by an ion channel forming lipodepsipeptide toxin".Molecular Plant-Microbe Interactions.1 (4):407–411.doi:10.1094/MPMI-4-407.
  39. ^Young, J. M. (1970)."Drippy gill: a bacterial disease of cultivated mushrooms caused byPseudomonas agarici n. sp".New Zealand Journal of Agricultural Research.13 (4):977–90.Bibcode:1970NZJAR..13..977Y.doi:10.1080/00288233.1970.10430530.
  40. ^Haas, Dieter; Défago, Geneviève (2005). "Biological control of soil-borne pathogens by fluorescent pseudomonads".Nature Reviews Microbiology.3 (4):307–319.doi:10.1038/nrmicro1129.PMID 15759041.S2CID 18469703.
  41. ^Chin-A-Woeng TF; Bloemberg, Guido V.; Mulders, Ine H. M.; Dekkers, Linda C.; et al. (2000)."Root colonization by phenazine-1-carboxamide-producing bacteriumPseudomonas chlororaphis PCL1391 is essential for biocontrol of tomato foot and root rot".Mol Plant Microbe Interact.13 (12):1340–1345.Bibcode:2000MPMI...13.1340C.doi:10.1094/MPMI.2000.13.12.1340.hdl:1887/62881.PMID 11106026.
  42. ^Esipov, SE; Adanin, VM; Baskunov, BP; Kiprianova, EA; et al. (1975). "Novyĭ antibioticheski aktivnyĭ florogliutsid iz Pseudomonas aurantiaca" [New antibiotically active fluoroglucide fromPseudomonas aurantiaca].Antibiotiki (in Russian).20 (12):1077–81.PMID 1225181.
  43. ^O'Mahony, Mark M.; Dobson, Alan D. W.; Barnes, Jeremy D.; Singleton, Ian (2006). "The use of ozone in the remediation of polycyclic aromatic hydrocarbon contaminated soil".Chemosphere.63 (2):307–314.Bibcode:2006Chmsp..63..307O.doi:10.1016/j.chemosphere.2005.07.018.PMID 16153687.
  44. ^Yen, K M; Karl, M R; Blatt, L M; Simon, M J; Winter, R B; Fausset, P R; Lu, H S; Harcourt, A A; Chen, K K (1991)."Cloning and characterization of aPseudomonas mendocina KR1 gene cluster encoding toluene-4-monooxygenase".Journal of Bacteriology.173 (17):5315–27.doi:10.1128/jb.173.17.5315-5327.1991.PMC 208241.PMID 1885512.
  45. ^Huertas, M.-J.; Luque-Almagro, V.M.; Martínez-Luque, M.; Blasco, R.; Moreno-Vivián, C.; Castillo, F.; Roldán, M.-D. (2006). "Cyanide metabolism ofPseudomonas pseudoalcaligenes CECT5344: role of siderophores".Biochemical Society Transactions.34 (1):152–5.doi:10.1042/BST0340152.PMID 16417508.
  46. ^Nojiri, Hideaki; Maeda, Kana; Sekiguchi, Hiroyo; Urata, Masaaki; Shintani, Masaki; Yoshida, Takako; Habe, Hiroshi; Omori, Toshio (2002)."Organization and transcriptional characterization of catechol degradation genes involved in carbazole degradation byPseudomonas resinovorans strain CA10".Bioscience, Biotechnology, and Biochemistry.66 (4):897–901.doi:10.1271/bbb.66.897.PMID 12036072.
  47. ^Gilani, Razia Alam; Rafique, Mazhar; Rehman, Abdul; Munis, Muhammad Farooq Hussain; Rehman, Shafiq ur; Chaudhary, Hassan Javed (2016). "Biodegradation of chlorpyrifos by bacterial genusPseudomonas".Journal of Basic Microbiology.56 (2):105–119.doi:10.1002/jobm.201500336.ISSN 1521-4028.PMID 26837064.S2CID 1373984.
  48. ^Nam, IH; Chang, YS; Hong, HB; Lee, YE (2003). "A novel catabolic activity ofPseudomonas veronii in biotransformation of pentachlorophenol".Applied Microbiology and Biotechnology.62 (2–3):284–290.doi:10.1007/s00253-003-1255-1.PMID 12883877.S2CID 31700132.
  49. ^Onaca, Christina; Kieninger, Martin; Engesser, Karl H.; Altenbuchner, Josef (May 2007)."Degradation of alkyl methyl ketones byPseudomonas veronii".Journal of Bacteriology.189 (10):3759–3767.doi:10.1128/JB.01279-06.PMC 1913341.PMID 17351032.
  50. ^Marqués, Silvia; Ramos, Juan L. (1993). "Transcriptional control of thePseudomonas putida TOL plasmid catabolic pathways".Molecular Microbiology.9 (5):923–929.doi:10.1111/j.1365-2958.1993.tb01222.x.PMID 7934920.S2CID 20663917.
  51. ^Sepúlveda-Torres, Lycely Del C.; Rajendran, Narayanan; Dybas, Michael J.; Criddle, Craig S. (1999). "Generation and initial characterization ofPseudomonas stutzeri KC mutants with impaired ability to degrade carbon tetrachloride".Archives of Microbiology.171 (6):424–429.Bibcode:1999ArMic.171..424D.doi:10.1007/s002030050729.PMID 10369898.S2CID 19916486.
  52. ^"What IsPseudomonas Aeruginosa?".WebMD. October 27, 2022. Retrieved2023-08-07.
  53. ^abcWood, Peter (2021-03-16)."Pseudomonas: How to Treat and Prevent in Commercial Water Systems".Wychwood Water Systems. Retrieved2023-08-07.
  54. ^abcdDasen, S. E.; LiPuma, J. J.; Kostman, J. R.; Stull, T. L. (1 October 1994)."Characterization of PCR-ribotyping for Burkholderia (Pseudomonas) cepacia".Journal of Clinical Microbiology.32 (10):2422–2424.doi:10.1128/JCM.32.10.2422-2424.1994.ISSN 0095-1137.PMC 264078.PMID 7529239.
  55. ^abcdeDogan, Belgin; Boor, Kathryn J. (1 January 2003)."Genetic Diversity and Spoilage Potentials among Pseudomonas spp. Isolated from Fluid Milk Products and Dairy Processing Plants".Applied and Environmental Microbiology.69 (1):130–138.Bibcode:2003ApEnM..69..130D.doi:10.1128/AEM.69.1.130-138.2003.ISSN 0099-2240.PMC 152439.PMID 12513987.
  56. ^abcCasalinuovo, Ida A.; Di Pierro, Donato; Coletta, Massimiliano; Di Francesco, Paolo (1 November 2006)."Application of Electronic Noses for Disease Diagnosis and Food Spoilage Detection".Sensors.6 (11):1428–1439.Bibcode:2006Senso...6.1428C.doi:10.3390/s6111428.PMC 3909407.
  57. ^abcdMagan, Naresh; Pavlou, Alex; Chrysanthakis, Ioannis (5 January 2001). "Milk-sense: a volatile sensing system recognises spoilage bacteria and yeasts in milk".Sensors and Actuators B: Chemical.72 (1):28–34.Bibcode:2001SeAcB..72...28M.doi:10.1016/S0925-4005(00)00621-3.
  58. ^Pseudomonas inLPSN;Parte, Aidan C.; Sardà Carbasse, Joaquim; Meier-Kolthoff, Jan P.; Reimer, Lorenz C.; Göker, Markus (1 November 2020)."List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ".International Journal of Systematic and Evolutionary Microbiology.70 (11):5607–5612.doi:10.1099/ijsem.0.004332.
  59. ^Anzai, Y; Kim, H; Park, J Y; Wakabayashi, H; Oyaizu, H (2000)."Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence".International Journal of Systematic and Evolutionary Microbiology.50 (4):1563–1589.doi:10.1099/00207713-50-4-1563.ISSN 1466-5034.PMID 10939664.
  60. ^Jun, Se-Ran; Wassenaar, Trudy M.; Nookaew, Intawat; Hauser, Loren; Wanchai, Visanu; Land, Miriam; Timm, Collin M.; Lu, Tse-Yuan S.; Schadt, Christopher W.; Doktycz, Mitchel J.; Pelletier, Dale A.; Ussery, David W. (2016)."Diversity of Pseudomonas Genomes, Including Populus-Associated Isolates, as Revealed by Comparative Genome Analysis".Applied and Environmental Microbiology.82 (1):375–383.Bibcode:2016ApEnM..82..375J.doi:10.1128/AEM.02612-15.ISSN 0099-2240.PMC 4702629.PMID 26519390.
  61. ^Mulet, Magdalena; Lalucat, Jorge; García-Valdés, Elena (2010). "DNA sequence-based analysis of thePseudomonas species".Environmental Microbiology.12 (6):1513–30.Bibcode:2010EnvMi..12.1513M.doi:10.1111/j.1462-2920.2010.02181.x.PMID 20192968.
  62. ^Mulet, Magdalena; Gomila, Margarita; Scotta, Claudia; Sánchez, David; Lalucat, Jorge; García-Valdés, Elena (2012)."Concordance between whole-cell matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry and multilocus sequence analysis approaches in species discrimination within the genus Pseudomonas".Systematic and Applied Microbiology.35 (7):455–464.Bibcode:2012SyApM..35..455M.doi:10.1016/j.syapm.2012.08.007.ISSN 0723-2020.PMID 23140936.
  63. ^Gomila, Margarita; Peña, Arantxa; Mulet, Magdalena; Lalucat, Jorge; García-Valdés, Elena (2015)."Phylogenomics and systematics in Pseudomonas".Frontiers in Microbiology.6: 214.doi:10.3389/fmicb.2015.00214.ISSN 1664-302X.PMC 4447124.PMID 26074881.
  64. ^Hesse, Cedar; Schulz, Frederik; Bull, Carolee T.; Shaffer, Brenda T.; Yan, Qing; Shapiro, Nicole; Hassan, Karl A.; Varghese, Neha; Elbourne, Liam D. H.; Paulsen, Ian T.; Kyrpides, Nikos; Woyke, Tanja; Loper, Joyce E. (2018)."Genome-based evolutionary history ofPseudomonas spp".Environmental Microbiology.20 (6):2142–2159.Bibcode:2018EnvMi..20.2142H.doi:10.1111/1462-2920.14130.ISSN 1462-2912.OSTI 1529110.PMID 29633519.S2CID 4737911.
  65. ^Girard, Léa; Lood, Cédric; Höfte, Monica; Vandamme, Peter; Rokni-Zadeh, Hassan; van Noort, Vera; Lavigne, Rob; De Mot, René (2021)."The Ever-ExpandingPseudomonas Genus: Description of 43 New Species and Partition of thePseudomonas putida Group".Microorganisms.9 (8): 1766.doi:10.3390/microorganisms9081766.ISSN 2076-2607.PMC 8401041.PMID 34442845.
  66. ^Van Landschoot, A.; Rossau, R.; De Ley, J. (1986)."Intra- and Intergeneric Similarities of the Ribosomal Ribonucleic Acid Cistrons ofAcinetobacter".International Journal of Systematic Bacteriology.36 (2): 150.doi:10.1099/00207713-36-2-150.
  67. ^Girard L, Lood C, Höfte M, Vandamme P, Rokni-Zadeh H, van Noort V, Lavigne R, De Mot R. (2021)."The Ever-ExpandingPseudomonas Genus: Description of 43 New Species and Partition of thePseudomonas putida Group".Microorganisms.9 (8): 1766.doi:10.3390/microorganisms9081766.PMC 8401041.PMID 34442845.
  68. ^Yi B, Dalpke AH (2022)."Revisiting the intrageneric structure of the genusPseudomonas with complete whole genome sequence information: Insights into diversity and pathogen-related genetic determinants".Infect Genet Evol.97 105183.Bibcode:2022InfGE..9705183Y.doi:10.1016/j.meegid.2021.105183.PMID 34920102.S2CID 245180021. Note that the tree in this reference has the same topology, but looks different because it is unrooted.
  69. ^abHertveldt, K.; Lavigne, R.; Pleteneva, E.; Sernova, N.; Kurochkina, L.; Korchevskii, R.; Robben, J.; Mesyanzhinov, V.; Krylov, V. N.; Volckaert, G. (2005)."Genome Comparison ofPseudomonas aeruginosa Large Phages"(PDF).Journal of Molecular Biology.354 (3):536–545.doi:10.1016/j.jmb.2005.08.075.PMID 16256135. Archived fromthe original(PDF) on 2016-03-04. Retrieved2015-08-27.
  70. ^Lavigne, Rob; Noben, Jean-Paul; Hertveldt, Kirsten; Ceyssens, Pieter-Jan; Briers, Yves; Dumont, Debora; Roucourt, Bart; Krylov, Victor N.; Mesyanzhinov, Vadim V.; Robben, Johan; Volckaert, Guido (2006)."The structural proteome ofPseudomonas aeruginosa bacteriophage ϕKMV".Microbiology.152 (2):529–534.doi:10.1099/mic.0.28431-0.ISSN 1465-2080.PMID 16436440.
  71. ^abCeyssens, Pieter-Jan; Lavigne, Rob; Mattheus, Wesley; Chibeu, Andrew; Hertveldt, Kirsten; Mast, Jan; Robben, Johan; Volckaert, Guido (2006)."Genomic Analysis ofPseudomonas aeruginosa Phages LKD16 and LKA1: Establishment of the φKMV Subgroup within the T7 Supergroup".Journal of Bacteriology.188 (19):6924–6931.doi:10.1128/JB.00831-06.ISSN 0021-9193.PMC 1595506.PMID 16980495.
  72. ^Lee, Lucy F.; Boezi, J. A. (1966)."Characterization of bacteriophage gh-1 forPseudomonas putida".Journal of Bacteriology.92 (6). American Society for Microbiology:1821–1827.doi:10.1128/JB.92.6.1821-1827.1966.PMC 316266.PMID 5958111.
  73. ^Ackermann, H.W.; Krisch, H. M. (10 December 1997). "A catalogue of T4-type bacteriophages".Archives of Virology.142 (12):2329–2345.doi:10.1007/s007050050246.PMID 9672598.S2CID 39369249.
  74. ^Buchanan, R. E. (1955). "Taxonomy".Annual Review of Microbiology.9:1–20.doi:10.1146/annurev.mi.09.100155.000245.PMID 13259458.

External links

[edit]
Wikimedia Commons has media related toPseudomonas.

General

[edit]
Portal:
Pseudomonas
National
Other
Retrieved from "https://en.wikipedia.org/w/index.php?title=Pseudomonas&oldid=1321904126"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp