Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Pseudo-determinant

From Wikipedia, the free encyclopedia

Inlinear algebra andstatistics, thepseudo-determinant[1] is the product of all non-zeroeigenvalues of asquare matrix. It coincides with the regulardeterminant when the matrix isnon-singular.

Definition

[edit]

The pseudo-determinant of a squaren-by-n matrixA may be defined as:

|A|+=limα0|A+αI|αnrank(A){\displaystyle |\mathbf {A} |_{+}=\lim _{\alpha \to 0}{\frac {|\mathbf {A} +\alpha \mathbf {I} |}{\alpha ^{n-\operatorname {rank} (\mathbf {A} )}}}}

where |A| denotes the usualdeterminant,I denotes theidentity matrix and rank(A) denotes the matrix rank ofA.[2]

Definition of pseudo-determinant using Vahlen matrix

[edit]

The Vahlen matrix of a conformal transformation, theMöbius transformation (i.e.(ax+b)(cx+d)1{\displaystyle (ax+b)(cx+d)^{-1}} fora,b,c,dG(p,q){\displaystyle a,b,c,d\in {\mathcal {G}}(p,q)}), is defined as[f]=[abcd]{\displaystyle [f]={\begin{bmatrix}a&b\\c&d\end{bmatrix}}}. By the pseudo-determinant of the Vahlen matrix for the conformal transformation, we mean

pdet[abcd]=adbc.{\displaystyle \operatorname {pdet} {\begin{bmatrix}a&b\\c&d\end{bmatrix}}=ad^{\dagger }-bc^{\dagger }.}

Ifpdet[f]>0{\displaystyle \operatorname {pdet} [f]>0}, the transformation is sense-preserving (rotation) whereas if thepdet[f]<0{\displaystyle \operatorname {pdet} [f]<0}, the transformation is sense-preserving (reflection).

Computation for positive semi-definite case

[edit]

IfA{\displaystyle A} is positive semi-definite, then the singular values andeigenvalues ofA{\displaystyle A} coincide. In this case, if thesingular value decomposition (SVD) is available, then|A|+{\displaystyle |\mathbf {A} |_{+}} may be computed as the product of the non-zero singular values. If all singular values are zero, then the pseudo-determinant is 1.

Supposingrank(A)=k{\displaystyle \operatorname {rank} (A)=k}, so thatk is the number of non-zero singular values, we may writeA=PP{\displaystyle A=PP^{\dagger }} whereP{\displaystyle P} is somen-by-k matrix and the dagger is theconjugate transpose. The singular values ofA{\displaystyle A} are the squares of the singular values ofP{\displaystyle P} and thus we have|A|+=|PP|{\displaystyle |A|_{+}=\left|P^{\dagger }P\right|}, where|PP|{\displaystyle \left|P^{\dagger }P\right|} is the usual determinant ink dimensions. Further, ifP{\displaystyle P} is written as the block columnP=(CD){\displaystyle P=\left({\begin{smallmatrix}C\\D\end{smallmatrix}}\right)}, then it holds, for any heights of the blocksC{\displaystyle C} andD{\displaystyle D}, that|A|+=|CC+DD|{\displaystyle |A|_{+}=\left|C^{\dagger }C+D^{\dagger }D\right|}.

Application in statistics

[edit]

If a statistical procedure ordinarily compares distributions in terms of the determinants of variance-covariance matrices then, in the case of singular matrices, this comparison can be undertaken by using a combination of the ranks of the matrices and their pseudo-determinants, with the matrix of higher rank being counted as "largest" and the pseudo-determinants only being used if the ranks are equal.[3] Thus pseudo-determinants are sometime presented in the outputs of statistical programs in cases where covariance matrices are singular.[4] In particular, the normalization for amultivariate normal distribution with a covariance matrixΣ that is not necessarily nonsingular can be written as1(2π)rank(Σ)|Σ|+=1|2πΣ|+.{\displaystyle {\frac {1}{\sqrt {(2\pi )^{\operatorname {rank} (\mathbf {\Sigma } )}|\mathbf {\Sigma } |_{+}}}}={\frac {1}{\sqrt {|2\pi \mathbf {\Sigma } |_{+}}}}\,.}

See also

[edit]

References

[edit]
  1. ^Minka, T.P. (2001)."Inferring a Gaussian Distribution".PDF
  2. ^Florescu, Ionut (2014).Probability and Stochastic Processes. Wiley. p. 529.ISBN 978-0-470-62455-5.
  3. ^SAS documentation on "Robust Distance"
  4. ^Bohling, Geoffrey C. (1997) "GSLIB-style programs for discriminant analysis and regionalized classification",Computers & Geosciences, 23 (7), 739–761doi:10.1016/S0098-3004(97)00050-2
Retrieved from "https://en.wikipedia.org/w/index.php?title=Pseudo-determinant&oldid=1296013574"
Categories:

[8]ページ先頭

©2009-2026 Movatter.jp