Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Prototype pattern

From Wikipedia, the free encyclopedia
Creational design pattern in software development
For other uses, seeSoftware prototyping.
Not to be confused withPrototype-based programming orFunction prototype.
This article has multiple issues. Please helpimprove it or discuss these issues on thetalk page.(Learn how and when to remove these messages)
icon
This articleneeds additional citations forverification. Please helpimprove this article byadding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Prototype pattern" – news ·newspapers ·books ·scholar ·JSTOR
(November 2014) (Learn how and when to remove this message)
This article'stone or style may not reflect theencyclopedic tone used on Wikipedia. See Wikipedia'sguide to writing better articles for suggestions.(June 2019) (Learn how and when to remove this message)
(Learn how and when to remove this message)

Theprototype pattern is a creationaldesign pattern insoftware development. It is used when the types ofobjects to create is determined by aprototypicalinstance, which is cloned to produce new objects. This pattern is used to avoidsubclasses of an object creator in the client application, like thefactory method pattern does, and to avoid the inherent cost of creating a new object in the standard way (e.g., using the 'new' keyword) when it is prohibitively expensive for a given application.

To implement the pattern, the client declares an abstractbase class that specifies apure virtualclone() method. Any class that needs a "polymorphicconstructor" capability derives itself from the abstract base class, and implements theclone() operation.

The client, instead of writing code that invokes the "new" operator on a hard-coded class name, calls theclone() method on the prototype, calls afactory method with aparameter designating the particular concretederived class desired, or invokes theclone() method through some mechanism provided by another design pattern.

Themitotic division of a cell — resulting in two identical cells — is an example of a prototype that plays an active role in copying itself and thus, demonstrates the Prototype pattern. When a cell splits, two cells of identical genotype result. In other words, the cell clones itself.[1]

Overview

[edit]

The prototype design pattern is one of the 23Gang of Four design patterns that describe how to solve recurring design problems to design flexible and reusable object-oriented software, that is, objects that are easier to implement, change, test, and reuse.[2]: 117 

The prototype design pattern solves problems like:[3]

  • How can objects be created so that the specific type of object can be determined at runtime?
  • How can dynamically loaded classes be instantiated?

Creating objects directly within the class that requires (uses) the objects is inflexible because it commits the class to particular objects at compile-time and makes it impossible to specify which objects to create at run-time.

The prototype design pattern describes how to solve such problems:

  • Define aPrototype object that returns a copy of itself.
  • Create new objects by copying aPrototype object.

This enables configuration of a class with differentPrototype objects, which are copied to create new objects, and even more,Prototype objects can be added and removed at run-time.
See also the UML class and sequence diagram below.

Structure

[edit]

UML class and sequence diagram

[edit]
A sample UML class and sequence diagram for the Prototype design pattern.

In the aboveUMLclass diagram, theClient class refers to thePrototype interface for cloning aProduct.TheProduct1 class implements thePrototype interface by creating a copy of itself.
TheUMLsequence diagram shows the run-time interactions: TheClient object callsclone() on aprototype:Product1 object, which creates and returns a copy of itself (aproduct:Product1 object).

UML class diagram

[edit]
UML class diagram describing the prototype design pattern

Rules of thumb

[edit]

Sometimescreational patterns overlap—there are cases when either prototype orabstract factory would be appropriate. At other times, they complement each other: abstract factory might store a set of prototypes from which to clone and return product objects.[2]: 126  Abstract factory,builder, and prototype can usesingleton in their implementations.[2]: 81, 134  Abstract factory classes are often implemented with factory methods (creation throughinheritance), but they can be implemented using prototype (creation throughdelegation).[2]: 95 

Often, designs start out using Factory Method (less complicated, more customizable, subclasses proliferate) and evolve toward abstract factory, prototype, or builder (more flexible, more complex) as the designer discovers where more flexibility is needed.[2]: 136 

Prototype does not require subclassing, but it does require an "initialize" operation. Factory method requires subclassing, but does not require initialization.[2]: 116 

Designs that make heavy use of thecomposite anddecorator patterns often can benefit from Prototype as well.[2]: 126 

A general guideline in programming suggests using theclone() method when creating a duplicate object during runtime to ensure it accurately reflects the original object. This process, known as object cloning, produces a new object with identical attributes to the one being cloned. Alternatively,instantiating a class using thenew keyword generates an object with default attribute values.

For instance, in the context of designing a system for managing bank account transactions, it may be necessary to duplicate the object containing account information to conduct transactions while preserving the original data. In such scenarios, employing theclone() method is preferable over usingnew to instantiate a new object.

Example

[edit]

C++23 Example

[edit]

ThisC++23 implementation is based on the pre-C++98 implementation in the book. Discussion of the design pattern along with a complete illustrative example implementation using polymorphic class design are provided in theC++ Annotations.

importstd;usingstd::array;usingstd::shared_ptr;usingstd::unique_ptr;usingstd::vector;enumclassDirection:char{NORTH,SOUTH,EAST,WEST};classMapSite{public:virtualvoidenter()=0;virtualunique_ptr<MapSite>clone()const=0;virtual~MapSite()=default;};classRoom:publicMapSite{private:introomNumber;shared_ptr<array<shared_ptr<MapSite>,4>>sides;public:explicitRoom(intn=0):roomNumber{n},sides{std::make_shared<array<shared_ptr<MapSite>,4>>()}{}~Room()=default;Room&setSide(Directiond,shared_ptr<MapSite>ms){(*sides)[static_cast<size_t>(d)]=std::move(ms);std::println("Room::setSide {} ms",d);return*this;}virtualvoidenter()override{}virtualunique_ptr<MapSite>clone()constoverride{returnstd::make_unique<Room>(*this);}Room(constRoom&)=delete;Room&operator=(constRoom&)=delete;};classWall:publicMapSite{public:Wall():MapSite(){}~Wall()=default;virtualvoidenter()override{}[[nodiscard]]virtualunique_ptr<MapSite>clone()constoverride{returnstd::make_unique<Wall>(*this);}};classDoor:publicMapSite{private:shared_ptr<Room>room1;shared_ptr<Room>room2;public:explicitDoor(shared_ptr<Room>r1=nullptr,shared_ptr<Room>r2=nullptr):MapSite(),room1{std::move(r1)},room2{std::move(r2)}{}~Door()=default;virtualvoidenter()override{}[[nodiscard]]virtualunique_ptr<MapSite>clone()constoverride{returnstd::make_unique<Door>(*this);}voidinitialize(shared_ptr<Room>r1,shared_ptr<Room>r2){room1=std::move(r1);room2=std::move(r2);}Door(constDoor&)=delete;Door&operator=(constDoor&)=delete;};classMaze{private:vector<shared_ptr<Room>>rooms;public:Maze()=default;~Maze()=default;Maze&addRoom(shared_ptr<Room>r){std::println("Maze::addRoom {}",reinterpret_cast<void*>(r.get()));rooms.push_back(std::move(r));return*this;}[[nodiscard]]shared_ptr<Room>roomNo(intn)const{for(constRoom&r:rooms){// actual lookup logic here...}returnnullptr;}[[nodiscard]]virtualunique_ptr<Maze>clone()const{returnstd::make_unique<Maze>(*this);}};classMazeFactory{public:MazeFactory()=default;virtual~MazeFactory()=default;[[nodiscard]]virtualunique_ptr<Maze>makeMaze()const{returnstd::make_unique<Maze>();}[[nodiscard]]virtualshared_ptr<Wall>makeWall()const{returnstd::make_shared<Wall>();}[[nodiscard]]virtualshared_ptr<Room>makeRoom(intn)const{returnstd::make_shared<Room>(n);}[[nodiscard]]virtualshared_ptr<Door>makeDoor(shared_ptr<Room>r1,shared_ptr<Room>r2)const{returnstd::make_shared<Door>(std::move(r1),std::move(r2));}};classMazePrototypeFactory:publicMazeFactory{private:unique_ptr<Maze>prototypeMaze;shared_ptr<Room>prototypeRoom;shared_ptr<Wall>prototypeWall;shared_ptr<Door>prototypeDoor;public:MazePrototypeFactory(unique_ptr<Maze>m,shared_ptr<Wall>w,shared_ptr<Room>r,shared_ptr<Door>d):MazeFactory(),prototypeMaze{std::move(m)},prototypeRoom{std::move(r)},prototypeWall{std::move(w)},prototypeDoor{std::move(d)}{}~MazePrototypeFactory()=default;virtualunique_ptr<Maze>makeMaze()constoverride{returnprototypeMaze->clone();}[[nodiscard]]virtualshared_ptr<Room>makeRoom(intn)constoverride{returnprototypeRoom->clone();}[[nodiscard]]virtualshared_ptr<Wall>makeWall()constoverride{returnprototypeWall->clone();}[[nodiscard]]virtualshared_ptr<Door>makeDoor(shared_ptr<Room>r1,shared_ptr<Room>r2)constoverride{shared_ptr<Door>door=prototypeDoor->clone();door->initialize(std::move(r1),std::move(r2));returndoor;}MazePrototypeFactory(constMazePrototypeFactory&)=delete;MazePrototypeFactory&operator=(constMazePrototypeFactory&)=delete;};classMazeGame{public:MazeGame()=default;~MazeGame()=default;[[nodiscard]]unique_ptr<Maze>createMaze(MazePrototypeFactory&factory){unique_ptr<Maze>maze=factory.makeMaze();shared_ptr<Room>r1=factory.makeRoom(1);shared_ptr<Room>r2=factory.makeRoom(2);shared_ptr<Door>door=factory.makeDoor(r1,r2);maze->addRoom(std::move(r1)).addRoom(std::move(r2));r1->setSide(Direction::NORTH,factory.makeWall()).setSide(Direction::EAST,door).setSide(Direction::SOUTH,factory.makeWall()).setSide(Direction::WEST,factory.makeWall());r2->setSide(Direction::NORTH,factory.makeWall()).setSide(Direction::EAST,factory.makeWall()).setSide(Direction::SOUTH,factory.makeWall()).setSide(Direction::WEST,door);returnmaze;}};intmain(intargc,char*argv[]){MazeGamegame;MazePrototypeFactorysimpleMazeFactory(std::make_unique<Maze>(),std::make_shared<Wall>(),std::make_shared<Room>(0),std::make_shared<Door>());unique_ptr<Maze>maze=game.createMaze(simpleMazeFactory);}

The program output is:

Maze::addRoom0x1160f50Maze::addRoom0x1160f70Room::setSide00x11613c0Room::setSide20x1160f90Room::setSide10x11613e0Room::setSide30x1161400Room::setSide00x1161420Room::setSide20x1161440Room::setSide10x1161460Room::setSide30x1160f90

See also

[edit]

References

[edit]
  1. ^Duell, Michael (July 1997). "Non-Software Examples of Design Patterns".Object Magazine.7 (5): 54.ISSN 1055-3614.
  2. ^abcdefgGamma, Erich; Helm, Richard;Johnson, Ralph;Vlissides, John (1994).Design Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley.ISBN 0-201-63361-2.
  3. ^"The Prototype design pattern - Problem, Solution, and Applicability".w3sDesign.com. Retrieved2017-08-17.
Gang of Four
patterns
Creational
Structural
Behavioral
Concurrency
patterns
Architectural
patterns
Other
patterns
Books
People
Communities
See also
Retrieved from "https://en.wikipedia.org/w/index.php?title=Prototype_pattern&oldid=1320951404"
Category:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp