Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Proof thatπ is irrational

From Wikipedia, the free encyclopedia

Part ofa series of articles on the
mathematical constantπ
3.1415926535897932384626433...
Uses
Properties
Value
People
History
In culture
Related topics

In the 1760s,Johann Heinrich Lambert was the first to prove that thenumberπ isirrational, meaning it cannot be expressed as afractiona/b,{\displaystyle a/b,} wherea{\displaystyle a} andb{\displaystyle b} are bothintegers. In the 19th century,Charles Hermite found a proof that requires no prerequisite knowledge beyond basiccalculus. Three simplifications of Hermite's proof are due toMary Cartwright,Ivan Niven, andNicolas Bourbaki. Another proof, which is a simplification of Lambert's proof, is due toMiklós Laczkovich. Many of these areproofs by contradiction.

In 1882,Ferdinand von Lindemann proved thatπ{\displaystyle \pi } is not just irrational, buttranscendental as well.[1]

Lambert's proof

[edit]
Scan of formula on page 288 of Lambert's "Mémoires sur quelques propriétés remarquables des quantités transcendantes, circulaires et logarithmiques", Mémoires de l'Académie royale des sciences de Berlin (1768), 265–322

In 1761,Johann Heinrich Lambert proved thatπ{\displaystyle \pi } is irrational by first showing that thiscontinued fraction expansion holds:

tan(x)=x1x23x25x27.{\displaystyle \tan(x)={\cfrac {x}{1-{\cfrac {x^{2}}{3-{\cfrac {x^{2}}{5-{\cfrac {x^{2}}{7-{}\ddots }}}}}}}}.}

Then Lambert proved that ifx{\displaystyle x} is non-zero and rational, then this expression must be irrational. Sincetanπ4=1{\displaystyle \tan {\tfrac {\pi }{4}}=1}, it follows thatπ4{\displaystyle {\tfrac {\pi }{4}}} is irrational, and thusπ{\displaystyle \pi } is also irrational.[2] A simplification of Lambert's proof is givenbelow.

Hermite's proof

[edit]

Written in 1873, this proof uses the characterization ofπ{\displaystyle \pi } as the smallest positive number whose half is azero of thecosine function and it actually proves thatπ2{\displaystyle \pi ^{2}} is irrational.[3][4] As in many proofs of irrationality, it is aproof by contradiction.

Consider the sequences ofreal functionsAn{\displaystyle A_{n}} andUn{\displaystyle U_{n}} fornN0{\displaystyle n\in \mathbb {N} _{0}} defined by:

A0(x)=sin(x),An+1(x)=0xyAn(y)dyU0(x)=sin(x)x,Un+1(x)=Un(x)x{\displaystyle {\begin{aligned}A_{0}(x)&=\sin(x),&&A_{n+1}(x)=\int _{0}^{x}yA_{n}(y)\,dy\\[4pt]U_{0}(x)&={\frac {\sin(x)}{x}},&&U_{n+1}(x)=-{\frac {U_{n}'(x)}{x}}\end{aligned}}}

Usinginduction we can prove that

An(x)=x2n+1(2n+1)!!x2n+32×(2n+3)!!+x2n+52×4×(2n+5)!!Un(x)=1(2n+1)!!x22×(2n+3)!!+x42×4×(2n+5)!!{\displaystyle {\begin{aligned}A_{n}(x)&={\frac {x^{2n+1}}{(2n+1)!!}}-{\frac {x^{2n+3}}{2\times (2n+3)!!}}+{\frac {x^{2n+5}}{2\times 4\times (2n+5)!!}}\mp \cdots \\[4pt]U_{n}(x)&={\frac {1}{(2n+1)!!}}-{\frac {x^{2}}{2\times (2n+3)!!}}+{\frac {x^{4}}{2\times 4\times (2n+5)!!}}\mp \cdots \end{aligned}}}

and therefore we have:

Un(x)=An(x)x2n+1.{\displaystyle U_{n}(x)={\frac {A_{n}(x)}{x^{2n+1}}}.\,}

So

An+1(x)x2n+3=Un+1(x)=Un(x)x=1xddx(An(x)x2n+1)=1x(An(x)x2n+1(2n+1)x2nAn(x)x2(2n+1))=(2n+1)An(x)xAn(x)x2n+3{\displaystyle {\begin{aligned}{\frac {A_{n+1}(x)}{x^{2n+3}}}&=U_{n+1}(x)=-{\frac {U_{n}'(x)}{x}}=-{\frac {1}{x}}{\frac {\mathrm {d} }{\mathrm {d} x}}\left({\frac {A_{n}(x)}{x^{2n+1}}}\right)\\[6pt]&=-{\frac {1}{x}}\left({\frac {A_{n}'(x)\cdot x^{2n+1}-(2n+1)x^{2n}A_{n}(x)}{x^{2(2n+1)}}}\right)\\[6pt]&={\frac {(2n+1)A_{n}(x)-xA_{n}'(x)}{x^{2n+3}}}\end{aligned}}}

which is equivalent to

An+1(x)=(2n+1)An(x)x2An1(x).{\displaystyle A_{n+1}(x)=(2n+1)A_{n}(x)-x^{2}A_{n-1}(x).\,}

Using the definition of the sequence and employing induction we can show that

An(x)=Pn(x2)sin(x)+xQn(x2)cos(x),{\displaystyle A_{n}(x)=P_{n}(x^{2})\sin(x)+xQ_{n}(x^{2})\cos(x),\,}

wherePn{\displaystyle P_{n}} andQn{\displaystyle Q_{n}} are polynomial functions with integer coefficients and the degree ofPn{\displaystyle P_{n}} is smaller than or equal to12n.{\displaystyle {\bigl \lfloor }{\tfrac {1}{2}}n{\bigr \rfloor }.} In particular,An(12π)=Pn(14π2).{\displaystyle A_{n}{\bigl (}{\tfrac {1}{2}}\pi {\bigr )}=P_{n}{\bigl (}{\tfrac {1}{4}}\pi ^{2}{\bigr )}.}

Hermite also gave a closed expression for the functionAn,{\displaystyle A_{n},} namely

An(x)=x2n+12nn!01(1z2)ncos(xz)dz.{\displaystyle A_{n}(x)={\frac {x^{2n+1}}{2^{n}n!}}\int _{0}^{1}(1-z^{2})^{n}\cos(xz)\,\mathrm {d} z.\,}

He did not justify this assertion, but it can be proved easily. First of all, this assertion is equivalent to

12nn!01(1z2)ncos(xz)dz=An(x)x2n+1=Un(x).{\displaystyle {\frac {1}{2^{n}n!}}\int _{0}^{1}(1-z^{2})^{n}\cos(xz)\,\mathrm {d} z={\frac {A_{n}(x)}{x^{2n+1}}}=U_{n}(x).}

Proceeding by induction, taken=0.{\displaystyle n=0.}

01cos(xz)dz=sin(x)x=U0(x){\displaystyle \int _{0}^{1}\cos(xz)\,\mathrm {d} z={\frac {\sin(x)}{x}}=U_{0}(x)}

and, for the inductive step, consider anynatural numbern.{\displaystyle n.} If

12nn!01(1z2)ncos(xz)dz=Un(x),{\displaystyle {\frac {1}{2^{n}n!}}\int _{0}^{1}(1-z^{2})^{n}\cos(xz)\,\mathrm {d} z=U_{n}(x),}

then, usingintegration by parts andLeibniz's rule, one gets

12n+1(n+1)!01(1z2)n+1cos(xz)dz=12n+1(n+1)!((1z2)n+1sin(xz)x|z=0z=1=0 +012(n+1)(1z2)nzsin(xz)xdz)=1x12nn!01(1z2)nzsin(xz)dz=1xddx(12nn!01(1z2)ncos(xz)dz)=Un(x)x=Un+1(x).{\displaystyle {\begin{aligned}&{\frac {1}{2^{n+1}(n+1)!}}\int _{0}^{1}\left(1-z^{2}\right)^{n+1}\cos(xz)\,\mathrm {d} z\\&\qquad ={\frac {1}{2^{n+1}(n+1)!}}{\Biggl (}\,\overbrace {\left.(1-z^{2})^{n+1}{\frac {\sin(xz)}{x}}\right|_{z=0}^{z=1}} ^{=\,0}\ +\,\int _{0}^{1}2(n+1)\left(1-z^{2}\right)^{n}z{\frac {\sin(xz)}{x}}\,\mathrm {d} z{\Biggr )}\\[8pt]&\qquad ={\frac {1}{x}}\cdot {\frac {1}{2^{n}n!}}\int _{0}^{1}\left(1-z^{2}\right)^{n}z\sin(xz)\,\mathrm {d} z\\[8pt]&\qquad =-{\frac {1}{x}}\cdot {\frac {\mathrm {d} }{\mathrm {d} x}}\left({\frac {1}{2^{n}n!}}\int _{0}^{1}(1-z^{2})^{n}\cos(xz)\,\mathrm {d} z\right)\\[8pt]&\qquad =-{\frac {U_{n}'(x)}{x}}\\[4pt]&\qquad =U_{n+1}(x).\end{aligned}}}

If14π2=p/q,{\displaystyle {\tfrac {1}{4}}\pi ^{2}=p/q,} withp{\displaystyle p} andq{\displaystyle q} inN{\displaystyle \mathbb {N} }, then, since the coefficients ofPn{\displaystyle P_{n}} are integers and its degree is smaller than or equal to12n,{\displaystyle {\bigl \lfloor }{\tfrac {1}{2}}n{\bigr \rfloor },}qn/2Pn(14π2){\displaystyle q^{\lfloor n/2\rfloor }P_{n}{\bigl (}{\tfrac {1}{4}}\pi ^{2}{\bigr )}} is some integerN.{\displaystyle N.} In other words,

N=qn/2An(12π)=qn/212nn!(pq)n+1201(1z2)ncos(12πz)dz.{\displaystyle N=q^{\lfloor n/2\rfloor }{A_{n}}{\bigl (}{\tfrac {1}{2}}\pi {\bigr )}=q^{\lfloor n/2\rfloor }{\frac {1}{2^{n}n!}}\left({\dfrac {p}{q}}\right)^{n+{\frac {1}{2}}}\int _{0}^{1}(1-z^{2})^{n}\cos \left({\tfrac {1}{2}}\pi z\right)\,\mathrm {d} z.}

But this number is clearly greater than0.{\displaystyle 0.} On the other hand, the limit of this quantity asn{\displaystyle n} goes to infinity is zero, and so, ifn{\displaystyle n} is large enough,N<1.{\displaystyle N<1.} Thereby, a contradiction is reached.

Hermite did not present his proof as an end in itself but as an afterthought within his search for a proof of thetranscendence ofπ.{\displaystyle \pi .} He discussed the recurrence relations to motivate and to obtain a convenient integral representation. Once this integral representation is obtained, there are various ways to present a succinct and self-contained proof starting from the integral (as in Cartwright's, Bourbaki's or Niven's presentations), which Hermite could easily see (as he did in his proof of the transcendence ofe{\displaystyle e}[5]).

Moreover, Hermite's proof is closer to Lambert's proof than it seems. In fact,An(x){\displaystyle A_{n}(x)} is the "residue" (or "remainder") of Lambert's continued fraction fortanx.{\displaystyle \tan x.}[6]

Cartwright's proof

[edit]

Harold Jeffreys wrote that this proof was set as an example in an exam atCambridge University in 1945 byMary Cartwright, but that she had not traced its origin.[7] It still remains on the 4th problem sheet today for the Analysis IA course at Cambridge University.[8]

Consider the integrals

In(x)=11(1z2)ncos(xz)dz,{\displaystyle I_{n}(x)=\int _{-1}^{1}(1-z^{2})^{n}\cos(xz)\,dz,}

wheren{\displaystyle n} is a non-negative integer.

Twointegrations by parts give therecurrence relation

x2In(x)=2n(2n1)In1(x)4n(n1)In2(x).(n2){\displaystyle x^{2}I_{n}(x)=2n(2n-1)I_{n-1}(x)-4n(n-1)I_{n-2}(x).\qquad (n\geq 2)}

If

Jn(x)=x2n+1In(x),{\displaystyle J_{n}(x)=x^{2n+1}I_{n}(x),}

then this becomes

Jn(x)=2n(2n1)Jn1(x)4n(n1)x2Jn2(x).{\displaystyle J_{n}(x)=2n(2n-1)J_{n-1}(x)-4n(n-1)x^{2}J_{n-2}(x).}

Furthermore,J0(x)=2sinx{\displaystyle J_{0}(x)=2\sin x} andJ1(x)=4xcosx+4sinx.{\displaystyle J_{1}(x)=-4x\cos x+4\sin x.} Hence for allnZ+,{\displaystyle n\in \mathbb {Z} _{+},}

Jn(x)=x2n+1In(x)=n!(Pn(x)sin(x)+Qn(x)cos(x)),{\displaystyle J_{n}(x)=x^{2n+1}I_{n}(x)=n!{\bigl (}P_{n}(x)\sin(x)+Q_{n}(x)\cos(x){\bigr )},}

wherePn(x){\displaystyle P_{n}(x)} andQn(x){\displaystyle Q_{n}(x)} arepolynomials of degreen,{\displaystyle \leq n,} and withinteger coefficients (depending onn{\displaystyle n}).

Takex=12π,{\displaystyle x={\tfrac {1}{2}}\pi ,} and suppose if possible that12π=a/b{\displaystyle {\tfrac {1}{2}}\pi =a/b} wherea{\displaystyle a} andb{\displaystyle b} are natural numbers (i.e., assume thatπ{\displaystyle \pi } is rational). Then

a2n+1n!In(12π)=Pn(12π)b2n+1.{\displaystyle {\frac {a^{2n+1}}{n!}}I_{n}{\bigl (}{\tfrac {1}{2}}\pi {\bigr )}=P_{n}{\bigl (}{\tfrac {1}{2}}\pi {\bigr )}b^{2n+1}.}

The right side is an integer. But0<In(12π)<2{\displaystyle 0<I_{n}{\bigl (}{\tfrac {1}{2}}\pi {\bigr )}<2} since the interval[1,1]{\displaystyle [-1,1]} has length2{\displaystyle 2} and the function being integrated takes only values between0{\displaystyle 0} and1.{\displaystyle 1.} On the other hand,

a2n+1n!0 as n.{\displaystyle {\frac {a^{2n+1}}{n!}}\to 0\quad {\text{ as }}n\to \infty .}

Hence, for sufficiently largen{\displaystyle n}

0<a2n+1In(π2)n!<1,{\displaystyle 0<{\frac {a^{2n+1}I_{n}\left({\frac {\pi }{2}}\right)}{n!}}<1,}

that is, we could find an integer between0{\displaystyle 0} and1.{\displaystyle 1.} That is the contradiction that follows from the assumption thatπ{\displaystyle \pi } is rational.

This proof is similar to Hermite's proof. Indeed,

Jn(x)=x2n+111(1z2)ncos(xz)dz=2x2n+101(1z2)ncos(xz)dz=2n+1n!An(x).{\displaystyle {\begin{aligned}J_{n}(x)&=x^{2n+1}\int _{-1}^{1}(1-z^{2})^{n}\cos(xz)\,dz\\[5pt]&=2x^{2n+1}\int _{0}^{1}(1-z^{2})^{n}\cos(xz)\,dz\\[5pt]&=2^{n+1}n!A_{n}(x).\end{aligned}}}

However, it is clearly simpler. This is achieved by omitting the inductive definition of the functionsAn{\displaystyle A_{n}} and taking as a starting point their expression as an integral.

Niven's proof

[edit]

This proof uses the characterization ofπ{\displaystyle \pi } as the smallest positivezero of thesine function.[9]

Suppose thatπ{\displaystyle \pi } is rational, i.e.π=a/b{\displaystyle \pi =a/b} for some integersa{\displaystyle a} andb{\displaystyle b} which may be takenwithout loss of generality to both be positive. Given any positive integern,{\displaystyle n,} we define the polynomial function:

f(x)=xn(abx)nn!{\displaystyle f(x)={\frac {x^{n}(a-bx)^{n}}{n!}}}

and, for eachxR{\displaystyle x\in \mathbb {R} } let

F(x)=f(x)f(x)+f(4)(x)++(1)nf(2n)(x).{\displaystyle F(x)=f(x)-f''(x)+f^{(4)}(x)+\cdots +(-1)^{n}f^{(2n)}(x).}

Claim 1:F(0)+F(π){\displaystyle F(0)+F(\pi )} is an integer.

Proof:Expandingf{\displaystyle f} as a sum of monomials, the coefficient ofxk{\displaystyle x^{k}} is a number of the formck/n!{\displaystyle c_{k}/n!} whereck{\displaystyle c_{k}} is an integer, which is0{\displaystyle 0} ifk<n.{\displaystyle k<n.} Therefore,f(k)(0){\displaystyle f^{(k)}(0)} is0{\displaystyle 0} whenk<n{\displaystyle k<n} and it is equal to(k!/n!)ck{\displaystyle (k!/n!)c_{k}} ifnk2n{\displaystyle n\leq k\leq 2n}; in each case,f(k)(0){\displaystyle f^{(k)}(0)} is an integer and thereforeF(0){\displaystyle F(0)} is an integer.

On the other hand,f(πx)=f(x){\displaystyle f(\pi -x)=f(x)} and so(1)kf(k)(πx)=f(k)(x){\displaystyle (-1)^{k}f^{(k)}(\pi -x)=f^{(k)}(x)} for each non-negative integerk.{\displaystyle k.} In particular,(1)kf(k)(π)=f(k)(0).{\displaystyle (-1)^{k}f^{(k)}(\pi )=f^{(k)}(0).} Therefore,f(k)(π){\displaystyle f^{(k)}(\pi )} is also an integer and soF(π){\displaystyle F(\pi )} is an integer (in fact, it is easy to see thatF(π)=F(0){\displaystyle F(\pi )=F(0)}). SinceF(0){\displaystyle F(0)} andF(π){\displaystyle F(\pi )} are integers, so is their sum.

Claim 2:

0πf(x)sin(x)dx=F(0)+F(π){\displaystyle \int _{0}^{\pi }f(x)\sin(x)\,dx=F(0)+F(\pi )}

Proof: Sincef(2n+2){\displaystyle f^{(2n+2)}} is the zero polynomial, we have

F+F=f.{\displaystyle F''+F=f.}

Thederivatives of thesine andcosine function are given by sin' = cos and cos' = −sin. Hence theproduct rule implies

(FsinFcos)=fsin{\displaystyle (F'\cdot \sin {}-F\cdot \cos {})'=f\cdot \sin }

By thefundamental theorem of calculus

0πf(x)sin(x)dx=(F(x)sinxF(x)cosx)|0π.{\displaystyle \left.\int _{0}^{\pi }f(x)\sin(x)\,dx={\bigl (}F'(x)\sin x-F(x)\cos x{\bigr )}\right|_{0}^{\pi }.}

Sincesin0=sinπ=0{\displaystyle \sin 0=\sin \pi =0} andcos0=cosπ=1{\displaystyle \cos 0=-\cos \pi =1} (here we use the above-mentioned characterization ofπ{\displaystyle \pi } as a zero of the sine function), Claim 2 follows.

Conclusion: Sincef(x)>0{\displaystyle f(x)>0} andsinx>0{\displaystyle \sin x>0} for0<x<π{\displaystyle 0<x<\pi } (becauseπ{\displaystyle \pi } is thesmallest positive zero of the sine function), Claims 1 and 2 show thatF(0)+F(π){\displaystyle F(0)+F(\pi )} is apositive integer. Since0x(abx)πa{\displaystyle 0\leq x(a-bx)\leq \pi a} and0sinx1{\displaystyle 0\leq \sin x\leq 1} for0xπ,{\displaystyle 0\leq x\leq \pi ,} we have, by the original definition off,{\displaystyle f,}

0πf(x)sin(x)dxπ(πa)nn!{\displaystyle \int _{0}^{\pi }f(x)\sin(x)\,dx\leq \pi {\frac {(\pi a)^{n}}{n!}}}

which is smaller than1{\displaystyle 1} for largen,{\displaystyle n,} henceF(0)+F(π)<1{\displaystyle F(0)+F(\pi )<1} for thesen,{\displaystyle n,} by Claim 2. This is impossible for the positive integerF(0)+F(π).{\displaystyle F(0)+F(\pi ).} This shows that the original assumption thatπ{\displaystyle \pi } is rational leads to a contradiction, which concludes the proof.

The above proof is a polished version, which is kept as simple as possible concerning the prerequisites, of an analysis of the formula

0πf(x)sin(x)dx=j=0n(1)j(f(2j)(π)+f(2j)(0))+(1)n+10πf(2n+2)(x)sin(x)dx,{\displaystyle \int _{0}^{\pi }f(x)\sin(x)\,dx=\sum _{j=0}^{n}(-1)^{j}\left(f^{(2j)}(\pi )+f^{(2j)}(0)\right)+(-1)^{n+1}\int _{0}^{\pi }f^{(2n+2)}(x)\sin(x)\,dx,}

which is obtained by2n+2{\displaystyle 2n+2}integrations by parts. Claim 2 essentially establishes this formula, where the use ofF{\displaystyle F} hides the iterated integration by parts. The last integral vanishes becausef(2n+2){\displaystyle f^{(2n+2)}} is the zero polynomial. Claim 1 shows that the remaining sum is an integer.

Niven's proof is closer to Cartwright's (and therefore Hermite's) proof than it appears at first sight.[6] In fact,

Jn(x)=x2n+111(1z2)ncos(xz)dz=11(x2(xz)2)nxcos(xz)dz.{\displaystyle {\begin{aligned}J_{n}(x)&=x^{2n+1}\int _{-1}^{1}(1-z^{2})^{n}\cos(xz)\,dz\\&=\int _{-1}^{1}\left(x^{2}-(xz)^{2}\right)^{n}x\cos(xz)\,dz.\end{aligned}}}

Therefore, thesubstitutionxz=y{\displaystyle xz=y} turns this integral into

xx(x2y2)ncos(y)dy.{\displaystyle \int _{-x}^{x}(x^{2}-y^{2})^{n}\cos(y)\,dy.}

In particular,

Jn(π2)=π/2π/2(π24y2)ncos(y)dy=0π(π24(yπ2)2)ncos(yπ2)dy=0πyn(πy)nsin(y)dy=n!bn0πf(x)sin(x)dx.{\displaystyle {\begin{aligned}J_{n}\left({\frac {\pi }{2}}\right)&=\int _{-\pi /2}^{\pi /2}\left({\frac {\pi ^{2}}{4}}-y^{2}\right)^{n}\cos(y)\,dy\\[5pt]&=\int _{0}^{\pi }\left({\frac {\pi ^{2}}{4}}-\left(y-{\frac {\pi }{2}}\right)^{2}\right)^{n}\cos \left(y-{\frac {\pi }{2}}\right)\,dy\\[5pt]&=\int _{0}^{\pi }y^{n}(\pi -y)^{n}\sin(y)\,dy\\[5pt]&={\frac {n!}{b^{n}}}\int _{0}^{\pi }f(x)\sin(x)\,dx.\end{aligned}}}

Another connection between the proofs lies in the fact that Hermite already mentions[3] that iff{\displaystyle f} is a polynomial function and

F=ff(2)+f(4),{\displaystyle F=f-f^{(2)}+f^{(4)}\mp \cdots ,}

then

f(x)sin(x)dx=F(x)sin(x)F(x)cos(x)+C,{\displaystyle \int f(x)\sin(x)\,dx=F'(x)\sin(x)-F(x)\cos(x)+C,}

from which it follows that

0πf(x)sin(x)dx=F(π)+F(0).{\displaystyle \int _{0}^{\pi }f(x)\sin(x)\,dx=F(\pi )+F(0).}

Bourbaki's proof

[edit]

Bourbaki's proof is outlined as an exercise in hiscalculus treatise.[10] For each natural numberb and each non-negative integern,{\displaystyle n,} define

An(b)=bn0πxn(πx)nn!sin(x)dx.{\displaystyle A_{n}(b)=b^{n}\int _{0}^{\pi }{\frac {x^{n}(\pi -x)^{n}}{n!}}\sin(x)\,dx.}

SinceAn(b){\displaystyle A_{n}(b)} is the integral of a function defined on[0,π]{\displaystyle [0,\pi ]} that takes the value0{\displaystyle 0} at0{\displaystyle 0} andπ{\displaystyle \pi } and which is greater than0{\displaystyle 0} otherwise,An(b)>0.{\displaystyle A_{n}(b)>0.} Besides, for each natural numberb,{\displaystyle b,}An(b)<1{\displaystyle A_{n}(b)<1} ifn{\displaystyle n} is large enough, because

x(πx)(π2)2{\displaystyle x(\pi -x)\leq \left({\frac {\pi }{2}}\right)^{2}}

and therefore

An(b)πbn1n!(π2)2n=π(bπ2/4)nn!.{\displaystyle A_{n}(b)\leq \pi b^{n}{\frac {1}{n!}}\left({\frac {\pi }{2}}\right)^{2n}=\pi {\frac {(b\pi ^{2}/4)^{n}}{n!}}.}

On the other hand,repeated integration by parts allows us to deduce that, ifa{\displaystyle a} andb{\displaystyle b} are natural numbers such thatπ=a/b{\displaystyle \pi =a/b} andf{\displaystyle f} is the polynomial function from[0,π]{\displaystyle [0,\pi ]} intoR{\displaystyle \mathbb {R} } defined by

f(x)=xn(abx)nn!,{\displaystyle f(x)={\frac {x^{n}(a-bx)^{n}}{n!}},}

then:

An(b)=0πf(x)sin(x)dx=[f(x)cos(x)]x=0x=π[f(x)sin(x)]x=0x=π+ ±[f(2n)(x)cos(x)]x=0x=π±0πf(2n+1)(x)cos(x)dx.{\displaystyle {\begin{aligned}A_{n}(b)&=\int _{0}^{\pi }f(x)\sin(x)\,dx\\[5pt]&={\Big [}{-f(x)\cos(x)}{\Big ]}_{x=0}^{x=\pi }\,-{\Big [}{-f'(x)\sin(x)}{\Big ]}_{x=0}^{x=\pi }+\cdots \\[5pt]&\ \qquad \pm {\Big [}f^{(2n)}(x)\cos(x){\Big ]}_{x=0}^{x=\pi }\,\pm \int _{0}^{\pi }f^{(2n+1)}(x)\cos(x)\,dx.\end{aligned}}}

This last integral is0,{\displaystyle 0,} sincef(2n+1){\displaystyle f^{(2n+1)}} is the null function (becausef{\displaystyle f} is a polynomial function of degree2n{\displaystyle 2n}). Since each functionf(k){\displaystyle f^{(k)}} (with0k2n{\displaystyle 0\leq k\leq 2n}) takes integer values at0{\displaystyle 0} andπ{\displaystyle \pi } and since the same thing happens with the sine and the cosine functions, this proves thatAn(b){\displaystyle A_{n}(b)} is an integer. Since it is also greater than0,{\displaystyle 0,} it must be a natural number. But it was also proved thatAn(b)<1{\displaystyle A_{n}(b)<1} ifn{\displaystyle n} is large enough, thereby reaching acontradiction.

This proof is quite close to Niven's proof, the main difference between them being the way of proving that the numbersAn(b){\displaystyle A_{n}(b)} are integers.

Laczkovich's proof

[edit]

Miklós Laczkovich's proof is a simplification of Lambert's original proof.[11] He considers the functions

fk(x)=1x2k+x42!k(k+1)x63!k(k+1)(k+2)+(k{0,1,2,}).{\displaystyle f_{k}(x)=1-{\frac {x^{2}}{k}}+{\frac {x^{4}}{2!k(k+1)}}-{\frac {x^{6}}{3!k(k+1)(k+2)}}+\cdots \quad (k\notin \{0,-1,-2,\ldots \}).}

These functions are clearly defined for any real numberx.{\displaystyle x.} Additionally,

f1/2(x)=cos(2x),{\displaystyle f_{1/2}(x)=\cos(2x),}
f3/2(x)=sin(2x)2x.{\displaystyle f_{3/2}(x)={\frac {\sin(2x)}{2x}}.}

Claim 1: The followingrecurrence relation holds for any real numberx{\displaystyle x}:

x2k(k+1)fk+2(x)=fk+1(x)fk(x).{\displaystyle {\frac {x^{2}}{k(k+1)}}f_{k+2}(x)=f_{k+1}(x)-f_{k}(x).}

Proof: This can be proved by comparing the coefficients of the powers ofx.{\displaystyle x.}

Claim 2: For each real numberx,{\displaystyle x,}

limk+fk(x)=1.{\displaystyle \lim _{k\to +\infty }f_{k}(x)=1.}

Proof: The sequencex2n/n!{\displaystyle x^{2n}/n!} is bounded (since it converges to0{\displaystyle 0}) and ifC{\displaystyle C} is an upper bound and ifk>1,{\displaystyle k>1,} then

|fk(x)1|n=1Ckn=C1/k11/k=Ck1.{\displaystyle \left|f_{k}(x)-1\right|\leqslant \sum _{n=1}^{\infty }{\frac {C}{k^{n}}}=C{\frac {1/k}{1-1/k}}={\frac {C}{k-1}}.}

Claim 3: Ifx0,{\displaystyle x\neq 0,}x2{\displaystyle x^{2}} is rational, andkQ{0,1,2,}{\displaystyle k\in \mathbb {Q} \smallsetminus \{0,-1,-2,\ldots \}} then

fk(x)0 and fk+1(x)fk(x)Q.{\displaystyle f_{k}(x)\neq 0\quad {\text{ and }}\quad {\frac {f_{k+1}(x)}{f_{k}(x)}}\notin \mathbb {Q} .}

Proof: Otherwise, there would be a numbery0{\displaystyle y\neq 0} and integersa{\displaystyle a} andb{\displaystyle b} such thatfk(x)=ay{\displaystyle f_{k}(x)=ay} andfk+1(x)=by.{\displaystyle f_{k+1}(x)=by.} To see why, takey=fk+1(x),{\displaystyle y=f_{k+1}(x),}a=0,{\displaystyle a=0,} andb=1{\displaystyle b=1} iffk(x)=0{\displaystyle f_{k}(x)=0}; otherwise, choose integersa{\displaystyle a} andb{\displaystyle b} such thatfk+1(x)/fk(x)=b/a{\displaystyle f_{k+1}(x)/f_{k}(x)=b/a} and definey=fk(x)/a=fk+1(x)/b.{\displaystyle y=f_{k}(x)/a=f_{k+1}(x)/b.} In each case,y{\displaystyle y} cannot be0,{\displaystyle 0,} because otherwise it would follow from claim 1 that eachfk+n(x){\displaystyle f_{k+n}(x)} (nN{\displaystyle n\in \mathbb {N} }) would be0,{\displaystyle 0,} which would contradict claim 2. Now, take a natural numberc{\displaystyle c} such that all three numbersbc/k,{\displaystyle bc/k,}ck/x2,{\displaystyle ck/x^{2},} andc/x2{\displaystyle c/x^{2}} are integers and consider the sequence

gn={fk(x)n=0cnk(k+1)(k+n1)fk+n(x)n0{\displaystyle g_{n}={\begin{cases}f_{k}(x)&n=0\\{\dfrac {c^{n}}{k(k+1)\cdots (k+n-1)}}f_{k+n}(x)&n\neq 0\end{cases}}}

Then

g0=fk(x)=ayZy and g1=ckfk+1(x)=bckyZy.{\displaystyle g_{0}=f_{k}(x)=ay\in \mathbb {Z} y\quad {\text{ and }}\quad g_{1}={\frac {c}{k}}f_{k+1}(x)={\frac {bc}{k}}y\in \mathbb {Z} y.}

On the other hand, it follows from claim 1 that

gn+2=cn+2x2k(k+1)(k+n1)x2(k+n)(k+n+1)fk+n+2(x)=cn+2x2k(k+1)(k+n1)fk+n+1(x)cn+2x2k(k+1)(k+n1)fk+n(x)=c(k+n)x2gn+1c2x2gn=(ckx2+cx2n)gn+1c2x2gn,{\displaystyle {\begin{aligned}g_{n+2}&={\frac {c^{n+2}}{x^{2}k(k+1)\cdots (k+n-1)}}\cdot {\frac {x^{2}}{(k+n)(k+n+1)}}f_{k+n+2}(x)\\[5pt]&={\frac {c^{n+2}}{x^{2}k(k+1)\cdots (k+n-1)}}f_{k+n+1}(x)-{\frac {c^{n+2}}{x^{2}k(k+1)\cdots (k+n-1)}}f_{k+n}(x)\\[5pt]&={\frac {c(k+n)}{x^{2}}}g_{n+1}-{\frac {c^{2}}{x^{2}}}g_{n}\\[5pt]&=\left({\frac {ck}{x^{2}}}+{\frac {c}{x^{2}}}n\right)g_{n+1}-{\frac {c^{2}}{x^{2}}}g_{n},\end{aligned}}}

which is a linear combination ofgn+1{\displaystyle g_{n+1}} andgn{\displaystyle g_{n}} with integer coefficients. Therefore, eachgn{\displaystyle g_{n}} is an integer multiple ofy.{\displaystyle y.} Besides, it follows from claim 2 that eachgn{\displaystyle g_{n}} is greater than0{\displaystyle 0} (and therefore thatgn|y|{\displaystyle g_{n}\geq |y|}) ifn{\displaystyle n} is large enough and that the sequence of allgn{\displaystyle g_{n}} converges to0.{\displaystyle 0.} But a sequence of numbers greater than or equal to|y|{\displaystyle |y|} cannot converge to0.{\displaystyle 0.}

Sincef1/2(14π)=cos12π=0,{\displaystyle f_{1/2}({\tfrac {1}{4}}\pi )=\cos {\tfrac {1}{2}}\pi =0,} it follows from claim 3 that116π2{\displaystyle {\tfrac {1}{16}}\pi ^{2}} is irrational and therefore thatπ{\displaystyle \pi } is irrational.

On the other hand, since

tanx=sinxcosx=xf3/2(x/2)f1/2(x/2),{\displaystyle \tan x={\frac {\sin x}{\cos x}}=x{\frac {f_{3/2}(x/2)}{f_{1/2}(x/2)}},}

another consequence of Claim 3 is that, ifxQ{0},{\displaystyle x\in \mathbb {Q} \smallsetminus \{0\},} thentanx{\displaystyle \tan x} is irrational.

Laczkovich's proof is about thehypergeometric function. In fact,fk(x)=0F1(kx2){\displaystyle f_{k}(x)={}_{0}F_{1}(k-x^{2})}, andGauss found a continued fraction expansion of the hypergeometric function using itsfunctional equation.[12] This allowed Laczkovich to find a new and simpler proof of the fact that the tangent function has the continued fraction expansion that Lambert had discovered.

Laczkovich's result can also be expressed inBessel functions of the first kindJν(x){\displaystyle J_{\nu }(x)}. In fact,Γ(k)Jk1(2x)=xk1fk(x){\displaystyle \Gamma (k)J_{k-1}(2x)=x^{k-1}f_{k}(x)} (whereΓ{\displaystyle \Gamma } is thegamma function). So Laczkovich's result is equivalent to: Ifx0,{\displaystyle x\neq 0,}x2{\displaystyle x^{2}} is rational, andkQ{0,1,2,}{\displaystyle k\in \mathbb {Q} \smallsetminus \{0,-1,-2,\ldots \}} then

xJk(x)Jk1(x)Q.{\displaystyle {\frac {xJ_{k}(x)}{J_{k-1}(x)}}\notin \mathbb {Q} .}

See also

[edit]

References

[edit]
  1. ^Lindemann, Ferdinand von (2004) [1882], "Ueber die Zahlπ", in Berggren, Lennart;Borwein, Jonathan M.;Borwein, Peter B. (eds.),Pi, a source book (3rd ed.), New York:Springer-Verlag, pp. 194–225,ISBN 0-387-20571-3.
  2. ^Lambert, Johann Heinrich (2004) [1768], "Mémoire sur quelques propriétés remarquables des quantités transcendantes circulaires et logarithmiques", in Berggren, Lennart;Borwein, Jonathan M.;Borwein, Peter B. (eds.),Pi, a source book (3rd ed.), New York:Springer-Verlag, pp. 129–140,ISBN 0-387-20571-3.
  3. ^abHermite, Charles (1873)."Extrait d'une lettre de Monsieur Ch. Hermite à Monsieur Paul Gordan".Journal für die reine und angewandte Mathematik (in French).76:303–311.
  4. ^Hermite, Charles (1873)."Extrait d'une lettre de Mr. Ch. Hermite à Mr. Carl Borchardt".Journal für die reine und angewandte Mathematik (in French).76:342–344.
  5. ^Hermite, Charles (1912) [1873]. "Sur la fonction exponentielle". InPicard, Émile (ed.).Œuvres de Charles Hermite (in French). Vol. III. Gauthier-Villars. pp. 150–181.
  6. ^abZhou, Li (2011). "Irrationality proofs à la Hermite".The Mathematical Gazette.95 (534):407–413.arXiv:0911.1929.doi:10.1017/S0025557200003491.S2CID 115175505.
  7. ^Jeffreys, Harold (1973),Scientific Inference (3rd ed.), Cambridge University Press, p. 268,ISBN 0-521-08446-6
  8. ^"Department of Pure Mathematics and Mathematical Statistics".www.dpmms.cam.ac.uk. Retrieved2022-04-19.
  9. ^Niven, Ivan (1947),"A simple proof thatπ is irrational"(PDF),Bulletin of the American Mathematical Society, vol. 53, no. 6, p. 509,doi:10.1090/s0002-9904-1947-08821-2
  10. ^Bourbaki, Nicolas (1949),Fonctions d'une variable réelle, chap. I–II–III, Actualités Scientifiques et Industrielles (in French), vol. 1074,Hermann, pp. 137–138
  11. ^Laczkovich, Miklós (1997), "On Lambert's proof of the irrationality ofπ",American Mathematical Monthly, vol. 104, no. 5, pp. 439–443,doi:10.2307/2974737,JSTOR 2974737
  12. ^Gauss, Carl Friedrich (1811–1813), "Disquisitiones generales circa seriem infinitam",Commentationes Societatis Regiae Scientiarum Gottingensis Recentiores (in Latin),2
Retrieved from "https://en.wikipedia.org/w/index.php?title=Proof_that_π_is_irrational&oldid=1304064214"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp