Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Projective tensor product

From Wikipedia, the free encyclopedia

Infunctional analysis, an area ofmathematics, theprojective tensor product of twolocally convex topological vector spaces is a natural topological vector space structure on theirtensor product. Namely, given locally convex topological vector spacesX{\displaystyle X} andY{\displaystyle Y}, theprojective topology, orπ-topology, onXY{\displaystyle X\otimes Y} is thestrongest topology which makesXY{\displaystyle X\otimes Y} a locally convex topological vector space such that the canonical map(x,y)xy{\displaystyle (x,y)\mapsto x\otimes y} (fromX×Y{\displaystyle X\times Y} toXY{\displaystyle X\otimes Y}) is continuous. When equipped with this topology,XY{\displaystyle X\otimes Y} is denotedXπY{\displaystyle X\otimes _{\pi }Y} and called the projective tensor product ofX{\displaystyle X} andY{\displaystyle Y}. It is a particular instance of atopological tensor product.

Definitions

[edit]

LetX{\displaystyle X} andY{\displaystyle Y} be locally convex topological vector spaces. Their projective tensor productXπY{\displaystyle X\otimes _{\pi }Y} is the unique locally convex topological vector space with underlying vector spaceXY{\displaystyle X\otimes Y} having the followinguniversal property:[1]

For any locally convex topological vector spaceZ{\displaystyle Z}, ifΦZ{\displaystyle \Phi _{Z}} is the canonical map from the vector space of bilinear mapsX×YZ{\displaystyle X\times Y\to Z} to the vector space of linear mapsXYZ{\displaystyle X\otimes Y\to Z}, then the image of the restriction ofΦZ{\displaystyle \Phi _{Z}} to thecontinuous bilinear maps is the space ofcontinuous linear mapsXπYZ{\displaystyle X\otimes _{\pi }Y\to Z}.

When the topologies ofX{\displaystyle X} andY{\displaystyle Y} are induced byseminorms, the topology ofXπY{\displaystyle X\otimes _{\pi }Y} is induced by seminorms constructed from those onX{\displaystyle X} andY{\displaystyle Y} as follows. Ifp{\displaystyle p} is a seminorm onX{\displaystyle X}, andq{\displaystyle q} is a seminorm onY{\displaystyle Y}, define theirtensor productpq{\displaystyle p\otimes q} to be the seminorm onXY{\displaystyle X\otimes Y} given by(pq)(b)=infr>0,brWr{\displaystyle (p\otimes q)(b)=\inf _{r>0,\,b\in rW}r}for allb{\displaystyle b} inXY{\displaystyle X\otimes Y}, whereW{\displaystyle W} is thebalanced convex hull of the set{xy:p(x)1,q(y)1}{\displaystyle \left\{x\otimes y:p(x)\leq 1,q(y)\leq 1\right\}}. The projective topology onXY{\displaystyle X\otimes Y} is generated by the collection of such tensor products of the seminorms onX{\displaystyle X} andY{\displaystyle Y}.[2][1]WhenX{\displaystyle X} andY{\displaystyle Y} arenormed spaces, this definition applied to the norms onX{\displaystyle X} andY{\displaystyle Y} gives a norm, called theprojective norm, onXY{\displaystyle X\otimes Y} which generates the projective topology.[3]

Properties

[edit]

Throughout, all spaces are assumed to be locally convex. The symbolX^πY{\displaystyle X{\widehat {\otimes }}_{\pi }Y} denotes the completion of the projective tensor product ofX{\displaystyle X} andY{\displaystyle Y}.

Completion

[edit]

In general, the spaceXπY{\displaystyle X\otimes _{\pi }Y} is not complete, even if bothX{\displaystyle X} andY{\displaystyle Y} are complete (in fact, ifX{\displaystyle X} andY{\displaystyle Y} are both infinite-dimensional Banach spaces thenXπY{\displaystyle X\otimes _{\pi }Y} is necessarilynot complete[8]). However,XπY{\displaystyle X\otimes _{\pi }Y} can always be linearly embedded as adense vector subspace of some complete locally convex TVS, which is generally denoted byX^πY{\displaystyle X{\widehat {\otimes }}_{\pi }Y}.

Thecontinuous dual space ofX^πY{\displaystyle X{\widehat {\otimes }}_{\pi }Y} is the same as that ofXπY{\displaystyle X\otimes _{\pi }Y}, namely, the space of continuous bilinear formsB(X,Y){\displaystyle B(X,Y)}.[9]

Grothendieck's representation of elements in the completion

[edit]

In a Hausdorff locally convex spaceX,{\displaystyle X,} a sequence(xi)i=1{\displaystyle \left(x_{i}\right)_{i=1}^{\infty }} inX{\displaystyle X} isabsolutely convergent ifi=1p(xi)<{\displaystyle \sum _{i=1}^{\infty }p\left(x_{i}\right)<\infty } for every continuous seminormp{\displaystyle p} onX.{\displaystyle X.}[10] We writex=i=1xi{\displaystyle x=\sum _{i=1}^{\infty }x_{i}} if the sequence of partial sums(i=1nxi)n=1{\displaystyle \left(\sum _{i=1}^{n}x_{i}\right)_{n=1}^{\infty }} converges tox{\displaystyle x} inX.{\displaystyle X.}[10]

The following fundamental result in the theory of topological tensor products is due toAlexander Grothendieck.[11]

TheoremLetX{\displaystyle X} andY{\displaystyle Y} be metrizable locally convex TVSs and letzX^πY.{\displaystyle z\in X{\widehat {\otimes }}_{\pi }Y.} Thenz{\displaystyle z} is the sum of anabsolutely convergent seriesz=i=1λixiyi{\displaystyle z=\sum _{i=1}^{\infty }\lambda _{i}x_{i}\otimes y_{i}}wherei=1|λi|<,{\displaystyle \sum _{i=1}^{\infty }|\lambda _{i}|<\infty ,} and(xi)i=1{\displaystyle \left(x_{i}\right)_{i=1}^{\infty }} and(yi)i=1{\displaystyle \left(y_{i}\right)_{i=1}^{\infty }} arenull sequences inX{\displaystyle X} andY,{\displaystyle Y,} respectively.

The next theorem shows that it is possible to make the representation ofz{\displaystyle z} independent of the sequences(xi)i=1{\displaystyle \left(x_{i}\right)_{i=1}^{\infty }} and(yi)i=1.{\displaystyle \left(y_{i}\right)_{i=1}^{\infty }.}

Theorem[12]LetX{\displaystyle X} andY{\displaystyle Y} beFréchet spaces and letU{\displaystyle U} (resp.V{\displaystyle V}) be a balanced open neighborhood of the origin inX{\displaystyle X} (resp. inY{\displaystyle Y}). LetK0{\displaystyle K_{0}} be a compact subset of the convex balanced hull ofUV:={uv:uU,vV}.{\displaystyle U\otimes V:=\{u\otimes v:u\in U,v\in V\}.} There exists a compact subsetK1{\displaystyle K_{1}} of the unit ball in1{\displaystyle \ell ^{1}} and sequences(xi)i=1{\displaystyle \left(x_{i}\right)_{i=1}^{\infty }} and(yi)i=1{\displaystyle \left(y_{i}\right)_{i=1}^{\infty }} contained inU{\displaystyle U} andV,{\displaystyle V,} respectively, converging to the origin such that for everyzK0{\displaystyle z\in K_{0}} there exists some(λi)i=1K1{\displaystyle \left(\lambda _{i}\right)_{i=1}^{\infty }\in K_{1}} such thatz=i=1λixiyi.{\displaystyle z=\sum _{i=1}^{\infty }\lambda _{i}x_{i}\otimes y_{i}.}

Topology of bi-bounded convergence

[edit]

LetBX{\displaystyle {\mathfrak {B}}_{X}} andBY{\displaystyle {\mathfrak {B}}_{Y}} denote the families of all bounded subsets ofX{\displaystyle X} andY,{\displaystyle Y,} respectively. Since the continuous dual space ofX^πY{\displaystyle X{\widehat {\otimes }}_{\pi }Y} is the space of continuous bilinear formsB(X,Y),{\displaystyle B(X,Y),} we can place onB(X,Y){\displaystyle B(X,Y)} the topology of uniform convergence on sets inBX×BY,{\displaystyle {\mathfrak {B}}_{X}\times {\mathfrak {B}}_{Y},} which is also called thetopology of bi-bounded convergence. This topology is coarser than thestrong topology onB(X,Y){\displaystyle B(X,Y)}, and in (Grothendieck 1955),Alexander Grothendieck was interested in when these two topologies were identical. This is equivalent to the problem: Given a bounded subsetBX^Y,{\displaystyle B\subseteq X{\widehat {\otimes }}Y,} do there exist bounded subsetsB1X{\displaystyle B_{1}\subseteq X} andB2Y{\displaystyle B_{2}\subseteq Y} such thatB{\displaystyle B} is a subset of the closed convex hull ofB1B2:={b1b2:b1B1,b2B2}{\displaystyle B_{1}\otimes B_{2}:=\{b_{1}\otimes b_{2}:b_{1}\in B_{1},b_{2}\in B_{2}\}}?

Grothendieck proved that these topologies are equal whenX{\displaystyle X} andY{\displaystyle Y} are both Banach spaces or both areDF-spaces (a class of spaces introduced by Grothendieck[13]). They are also equal when both spaces are Fréchet with one of them being nuclear.[9]

Strong dual and bidual

[edit]

LetX{\displaystyle X} be a locally convex topological vector space and letX{\displaystyle X^{\prime }} be its continuous dual space. Alexander Grothendieck characterized the strong dual and bidual for certain situations:

Theorem[14] (Grothendieck)LetN{\displaystyle N} andY{\displaystyle Y} be locally convex topological vector spaces withN{\displaystyle N}nuclear. Assume that bothN{\displaystyle N} andY{\displaystyle Y} are Fréchet spaces, or else that they are bothDF-spaces. Then, denoting strong dual spaces with a subscriptedb{\displaystyle b}:

  1. The strong dual ofN^πY{\displaystyle N{\widehat {\otimes }}_{\pi }Y} can be identified withNb^πYb{\displaystyle N_{b}^{\prime }{\widehat {\otimes }}_{\pi }Y_{b}^{\prime }};
  2. The bidual ofN^πY{\displaystyle N{\widehat {\otimes }}_{\pi }Y} can be identified withN^πY{\displaystyle N{\widehat {\otimes }}_{\pi }Y^{\prime \prime }};
  3. IfY{\displaystyle Y} is reflexive thenN^πY{\displaystyle N{\widehat {\otimes }}_{\pi }Y} (and henceNb^πYb{\displaystyle N_{b}^{\prime }{\widehat {\otimes }}_{\pi }Y_{b}^{\prime }}) is areflexive space;
  4. Every separately continuous bilinear form onNb×Yb{\displaystyle N_{b}^{\prime }\times Y_{b}^{\prime }} is continuous;
  5. LetL(Xb,Y){\displaystyle L\left(X_{b}^{\prime },Y\right)} be the space of bounded linear maps fromXb{\displaystyle X_{b}^{\prime }} toY{\displaystyle Y}. Then, its strong dual can be identified withNb^πYb,{\displaystyle N_{b}^{\prime }{\widehat {\otimes }}_{\pi }Y_{b}^{\prime },} so in particular ifY{\displaystyle Y} is reflexive then so isLb(Xb,Y).{\displaystyle L_{b}\left(X_{b}^{\prime },Y\right).}

Examples

[edit]

See also

[edit]

Citations

[edit]
  1. ^abTrèves 2006, p. 438.
  2. ^Trèves 2006, p. 435.
  3. ^abTrèves 2006, p. 437.
  4. ^Trèves 2006, p. 445.
  5. ^Trèves 2006, p. 439.
  6. ^abRyan 2002, p. 18.
  7. ^Ryan 2002, p. 24.
  8. ^Ryan 2002, p. 43.
  9. ^abSchaefer & Wolff 1999, p. 173.
  10. ^abSchaefer & Wolff 1999, p. 120.
  11. ^Schaefer & Wolff 1999, p. 94.
  12. ^Trèves 2006, pp. 459–460.
  13. ^Schaefer & Wolff 1999, p. 154.
  14. ^Schaefer & Wolff 1999, pp. 175–176.
  15. ^Schaefer & Wolff 1999, p. 95.

References

[edit]

Further reading

[edit]
  • Diestel, Joe (2008).The metric theory of tensor products : Grothendieck's résumé revisited. Providence, R.I: American Mathematical Society.ISBN 978-0-8218-4440-3.OCLC 185095773.
  • Grothendieck, Alexander (1955). "Produits Tensoriels Topologiques et Espaces Nucléaires" [Topological Tensor Products and Nuclear Spaces].Memoirs of the American Mathematical Society Series (in French).16. Providence: American Mathematical Society.MR 0075539.OCLC 9308061.
  • Grothendieck, Grothendieck (1966).Produits tensoriels topologiques et espaces nucléaires (in French). Providence: American Mathematical Society.ISBN 0-8218-1216-5.OCLC 1315788.
  • Pietsch, Albrecht (1972).Nuclear locally convex spaces. Berlin, New York: Springer-Verlag.ISBN 0-387-05644-0.OCLC 539541.
  • Wong (1979).Schwartz spaces, nuclear spaces, and tensor products. Berlin New York: Springer-Verlag.ISBN 3-540-09513-6.OCLC 5126158.

External links

[edit]
Basic concepts
Topologies
Operators/Maps
Theorems
Spaces
Properties
Theorems
Operators
Algebras
Open problems
Applications
Advanced topics
Retrieved from "https://en.wikipedia.org/w/index.php?title=Projective_tensor_product&oldid=1305105878"
Categories:
Hidden category:

[8]ページ先頭

©2009-2026 Movatter.jp