Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Profinite integer

From Wikipedia, the free encyclopedia
Number theory concept
This articlemay be too technical for most readers to understand. Pleasehelp improve it tomake it understandable to non-experts, without removing the technical details.(May 2023) (Learn how and when to remove this message)

Inmathematics, aprofinite integer is an element of thering (sometimes pronounced as zee-hat or zed-hat)

Z^=limZ/nZ,{\displaystyle {\widehat {\mathbb {Z} }}=\varprojlim \mathbb {Z} /n\mathbb {Z} ,}

where theinverse limit of thequotient ringsZ/nZ{\displaystyle \mathbb {Z} /n\mathbb {Z} } runs through allnatural numbersn{\displaystyle n},partially ordered bydivisibility. By definition, this ring is theprofinite completion of theintegersZ{\displaystyle \mathbb {Z} }. By theChinese remainder theorem,Z^{\displaystyle {\widehat {\mathbb {Z} }}} can also be understood as thedirect product of rings

Z^=pZp,{\displaystyle {\widehat {\mathbb {Z} }}=\prod _{p}\mathbb {Z} _{p},}

where the indexp{\displaystyle p} runs over allprime numbers, andZp{\displaystyle \mathbb {Z} _{p}} is the ring ofp-adic integers. This group is important because of its relation toGalois theory,étale homotopy theory, and the ring ofadeles. In addition, it provides a basic tractable example of aprofinite group.

Construction

[edit]

The profinite integersZ^{\displaystyle {\widehat {\mathbb {Z} }}} can be constructed as the set of sequencesυ{\displaystyle \upsilon } of residues represented asυ=(υ1mod1, υ2mod2, υ3mod3, ){\displaystyle \upsilon =(\upsilon _{1}{\bmod {1}},~\upsilon _{2}{\bmod {2}},~\upsilon _{3}{\bmod {3}},~\ldots )}such thatm | nυmυnmodm{\displaystyle m\ |\ n\implies \upsilon _{m}\equiv \upsilon _{n}{\bmod {m}}}.

Pointwise addition and multiplication make it a commutative ring.

The ring ofintegers embeds into the ring of profinite integers by the canonical injection:η:ZZ^{\displaystyle \eta :\mathbb {Z} \hookrightarrow {\widehat {\mathbb {Z} }}} wheren(nmod1,nmod2,).{\displaystyle n\mapsto (n{\bmod {1}},n{\bmod {2}},\dots ).}It is canonical since it satisfies theuniversal property of profinite groups that, given any profinite groupH{\displaystyle H} and any group homomorphismf:ZH{\displaystyle f:\mathbb {Z} \rightarrow H}, there exists a uniquecontinuous group homomorphismg:Z^H{\displaystyle g:{\widehat {\mathbb {Z} }}\rightarrow H} withf=gη{\displaystyle f=g\eta }.

Using Factorial number system

[edit]

Every integern0{\displaystyle n\geq 0} has a unique representation in thefactorial number system asn=i=1cii!with ciZ{\displaystyle n=\sum _{i=1}^{\infty }c_{i}i!\qquad {\text{with }}c_{i}\in \mathbb {Z} }where0cii{\displaystyle 0\leq c_{i}\leq i} for everyi{\displaystyle i}, and only finitely many ofc1,c2,c3,{\displaystyle c_{1},c_{2},c_{3},\ldots } are nonzero.

Its factorial number representation can be written as(c3c2c1)!{\displaystyle (\cdots c_{3}c_{2}c_{1})_{!}}.

In the same way, a profinite integer can be uniquely represented in the factorial number system as an infinite string(c3c2c1)!{\displaystyle (\cdots c_{3}c_{2}c_{1})_{!}}, where eachci{\displaystyle c_{i}} is an integer satisfying0cii{\displaystyle 0\leq c_{i}\leq i}.[1]

The digitsc1,c2,c3,,ck1{\displaystyle c_{1},c_{2},c_{3},\ldots ,c_{k-1}} determine the value of the profinite integer modk!{\displaystyle k!}. More specifically, there is a ring homomorphismZ^Z/k!Z{\displaystyle {\widehat {\mathbb {Z} }}\to \mathbb {Z} /k!\,\mathbb {Z} } sending(c3c2c1)!i=1k1cii!modk!{\displaystyle (\cdots c_{3}c_{2}c_{1})_{!}\mapsto \sum _{i=1}^{k-1}c_{i}i!\mod k!}The difference of a profinite integer from an integer is that the "finitely many nonzero digits" condition is dropped, allowing for its factorial number representation to have infinitely many nonzero digits.

Using the Chinese Remainder theorem

[edit]

Another way to understand the construction of the profinite integers is by using theChinese remainder theorem. Recall that for an integern{\displaystyle n} withprime factorizationn=p1a1pkak{\displaystyle n=p_{1}^{a_{1}}\cdots p_{k}^{a_{k}}}of non-repeating primes, there is aring isomorphismZ/nZ/p1a1××Z/pkak{\displaystyle \mathbb {Z} /n\cong \mathbb {Z} /p_{1}^{a_{1}}\times \cdots \times \mathbb {Z} /p_{k}^{a_{k}}}from the theorem. Moreover, anysurjectionZ/nZ/m{\displaystyle \mathbb {Z} /n\to \mathbb {Z} /m}will just be a map on the underlying decompositions where there are induced surjectionsZ/piaiZ/pibi{\displaystyle \mathbb {Z} /p_{i}^{a_{i}}\to \mathbb {Z} /p_{i}^{b_{i}}}since we must haveaibi{\displaystyle a_{i}\geq b_{i}}. It should be much clearer that under the inverse limit definition of the profinite integers, we have the isomorphismZ^pZp{\displaystyle {\widehat {\mathbb {Z} }}\cong \prod _{p}\mathbb {Z} _{p}}with the direct product ofp-adic integers.

Explicitly, the isomorphism isϕ:pZpZ^{\displaystyle \phi :\prod _{p}\mathbb {Z} _{p}\to {\widehat {\mathbb {Z} }}} byϕ((n2,n3,n5,))(k)=qnqmodk{\displaystyle \phi ((n_{2},n_{3},n_{5},\cdots ))(k)=\prod _{q}n_{q}\mod k}whereq{\displaystyle q} ranges over all prime-power factorspidi{\displaystyle p_{i}^{d_{i}}} ofk{\displaystyle k}, that is,k=i=1lpidi{\displaystyle k=\prod _{i=1}^{l}p_{i}^{d_{i}}} for some different prime numbersp1,...,pl{\displaystyle p_{1},...,p_{l}}.

Relations

[edit]

Topological properties

[edit]

The set of profinite integers has an induced topology in which it is acompactHausdorff space, coming from the fact that it can be seen as a closed subset of the infinitedirect productZ^n=1Z/nZ{\displaystyle {\widehat {\mathbb {Z} }}\subset \prod _{n=1}^{\infty }\mathbb {Z} /n\mathbb {Z} }which is compact with itsproduct topology byTychonoff's theorem. Note the topology on each finite groupZ/nZ{\displaystyle \mathbb {Z} /n\mathbb {Z} } is given as thediscrete topology.

The topology onZ^{\displaystyle {\widehat {\mathbb {Z} }}} can be defined by the metric,[1]d(x,y)=1min{kZ>0:xymod(k+1)!}{\displaystyle d(x,y)={\frac {1}{\min\{k\in \mathbb {Z} _{>0}:x\not \equiv y{\bmod {(k+1)!}}\}}}}

Since addition of profinite integers is continuous,Z^{\displaystyle {\widehat {\mathbb {Z} }}} is a compact Hausdorffabelian group, and thus itsPontryagin dual must be a discrete abelian group.

In fact, the Pontryagin dual ofZ^{\displaystyle {\widehat {\mathbb {Z} }}} is the abelian groupQ/Z{\displaystyle \mathbb {Q} /\mathbb {Z} } equipped with the discrete topology (note that it is not the subset topology inherited fromR/Z{\displaystyle \mathbb {R} /\mathbb {Z} }, which is not discrete). The Pontryagin dual is explicitly constructed by the function[2]Q/Z×Z^U(1),(q,a)χ(qa){\displaystyle \mathbb {Q} /\mathbb {Z} \times {\widehat {\mathbb {Z} }}\to U(1),\,(q,a)\mapsto \chi (qa)}whereχ{\displaystyle \chi } is the character of the adele (introduced below)AQ,f{\displaystyle \mathbf {A} _{\mathbb {Q} ,f}} induced byQ/ZU(1),αe2πiα{\displaystyle \mathbb {Q} /\mathbb {Z} \to U(1),\,\alpha \mapsto e^{2\pi i\alpha }}.[3]

Relation with adeles

[edit]

The tensor productZ^ZQ{\displaystyle {\widehat {\mathbb {Z} }}\otimes _{\mathbb {Z} }\mathbb {Q} } is thering of finite adelesAQ,f=pQp{\displaystyle \mathbf {A} _{\mathbb {Q} ,f}={\prod _{p}}'\mathbb {Q} _{p}}ofQ{\displaystyle \mathbb {Q} } where the symbol{\displaystyle '} meansrestricted product. That is, an element is a sequence that is integral except at a finite number of places.[4] There is an isomorphismAQR×(Z^ZQ){\displaystyle \mathbf {A} _{\mathbb {Q} }\cong \mathbb {R} \times ({\hat {\mathbb {Z} }}\otimes _{\mathbb {Z} }\mathbb {Q} )}

Applications in Galois theory and étale homotopy theory

[edit]

For thealgebraic closureF¯q{\displaystyle {\overline {\mathbf {F} }}_{q}} of afinite fieldFq{\displaystyle \mathbf {F} _{q}} of orderq, the Galois group can be computed explicitly. From the factGal(Fqn/Fq)Z/nZ{\displaystyle {\text{Gal}}(\mathbf {F} _{q^{n}}/\mathbf {F} _{q})\cong \mathbb {Z} /n\mathbb {Z} } where the automorphisms are given by theFrobenius endomorphism, the Galois group of the algebraic closure ofFq{\displaystyle \mathbf {F} _{q}} is given by the inverse limit of the groupsZ/nZ{\displaystyle \mathbb {Z} /n\mathbb {Z} }, so its Galois group is isomorphic to the group of profinite integers[5]Gal(F¯q/Fq)Z^{\displaystyle \operatorname {Gal} ({\overline {\mathbf {F} }}_{q}/\mathbf {F} _{q})\cong {\widehat {\mathbb {Z} }}}which gives a computation of theabsolute Galois group of a finite field.

Relation with étale fundamental groups of algebraic tori

[edit]

This construction can be re-interpreted in many ways. One of them is frométale homotopy type which defines theétale fundamental groupπ1et(X){\displaystyle \pi _{1}^{et}(X)} as the profinite completion of automorphismsπ1et(X)=limiIAut(Xi/X){\displaystyle \pi _{1}^{et}(X)=\lim _{i\in I}{\text{Aut}}(X_{i}/X)}whereXiX{\displaystyle X_{i}\to X} is anétale cover. Then, the profinite integers are isomorphic to the groupπ1et(Spec(Fq))Z^{\displaystyle \pi _{1}^{et}({\text{Spec}}(\mathbf {F} _{q}))\cong {\hat {\mathbb {Z} }}}from the earlier computation of the profinite Galois group. In addition, there is an embedding of the profinite integers inside the étale fundamental group of thealgebraic torusZ^π1et(Gm){\displaystyle {\hat {\mathbb {Z} }}\hookrightarrow \pi _{1}^{et}(\mathbb {G} _{m})}since the covering maps come from thepolynomial maps()n:GmGm{\displaystyle (\cdot )^{n}:\mathbb {G} _{m}\to \mathbb {G} _{m}}from the map ofcommutative ringsf:Z[x,x1]Z[x,x1]{\displaystyle f:\mathbb {Z} [x,x^{-1}]\to \mathbb {Z} [x,x^{-1}]} sendingxxn{\displaystyle x\mapsto x^{n}}sinceGm=Spec(Z[x,x1]){\displaystyle \mathbb {G} _{m}={\text{Spec}}(\mathbb {Z} [x,x^{-1}])}. If the algebraic torus is considered over a fieldk{\displaystyle k}, then the étale fundamental groupπ1et(Gm/Spec(k)){\displaystyle \pi _{1}^{et}(\mathbb {G} _{m}/{\text{Spec(k)}})} contains an action ofGal(k¯/k){\displaystyle {\text{Gal}}({\overline {k}}/k)} as well from thefundamental exact sequence in étale homotopy theory.

Class field theory and the profinite integers

[edit]

Class field theory is a branch ofalgebraic number theory studying the abelian field extensions of a field. Given theglobal fieldQ{\displaystyle \mathbb {Q} }, theabelianization of its absolute Galois groupGal(Q¯/Q)ab{\displaystyle {\text{Gal}}({\overline {\mathbb {Q} }}/\mathbb {Q} )^{ab}}is intimately related to the associated ring of adelesAQ{\displaystyle \mathbb {A} _{\mathbb {Q} }} and the group of profinite integers. In particular, there is a map, called theArtin map[6]ΨQ:AQ×/Q×Gal(Q¯/Q)ab{\displaystyle \Psi _{\mathbb {Q} }:\mathbb {A} _{\mathbb {Q} }^{\times }/\mathbb {Q} ^{\times }\to {\text{Gal}}({\overline {\mathbb {Q} }}/\mathbb {Q} )^{ab}}which is an isomorphism. This quotient can be determined explicitly as

AQ×/Q×(R×Z^)/Z=lim(R/mZ)=limxxmS1=Z^{\displaystyle {\begin{aligned}\mathbb {A} _{\mathbb {Q} }^{\times }/\mathbb {Q} ^{\times }&\cong (\mathbb {R} \times {\hat {\mathbb {Z} }})/\mathbb {Z} \\&={\underset {\leftarrow }{\lim }}\mathbb {(} {\mathbb {R} }/m\mathbb {Z} )\\&={\underset {x\mapsto x^{m}}{\lim }}S^{1}\\&={\hat {\mathbb {Z} }}\end{aligned}}}

giving the desired relation. There is an analogous statement forlocal class field theory since every finite abelian extension ofK/Qp{\displaystyle K/\mathbb {Q} _{p}} is induced from a finite field extensionFpn/Fp{\displaystyle \mathbb {F} _{p^{n}}/\mathbb {F} _{p}}.

See also

[edit]

Notes

[edit]
  1. ^abLenstra, Hendrik."Profinite number theory"(PDF).Mathematical Association of America. Retrieved11 August 2022.
  2. ^Connes & Consani 2015, § 2.4.
  3. ^K. Conrad,The character group ofQ
  4. ^Questions on some maps involving rings of finite adeles and their unit groups.
  5. ^Milne 2013, Ch. I Example A. 5.
  6. ^"Class field theory - lccs".www.math.columbia.edu. Retrieved2020-09-25.

References

[edit]

External links

[edit]
Retrieved from "https://en.wikipedia.org/w/index.php?title=Profinite_integer&oldid=1287675910"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp