Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Probability current

From Wikipedia, the free encyclopedia
Value for the flow of probability in quantum mechanics
Part of a series of articles about
Quantum mechanics
iddt|Ψ=H^|Ψ{\displaystyle i\hbar {\frac {d}{dt}}|\Psi \rangle ={\hat {H}}|\Psi \rangle }

Inquantum mechanics, theprobability current (sometimes calledprobabilityflux) is a mathematical quantity describing the flow ofprobability. Specifically, if one thinks of probability as aheterogeneous fluid, then the probability current is the rate of flow of this fluid. It is arealvector that changes with space and time. Probability currents are analogous tomass currents inhydrodynamics andelectric currents inelectromagnetism. As in those fields, the probability current (i.e. the probability current density) is related to theprobability density function via acontinuity equation. The probability current isinvariant undergauge transformation.

The concept of probability current is also used outside of quantum mechanics, when dealing with probability density functions that change over time, for instance inBrownian motion and theFokker–Planck equation.[1]

The relativistic equivalent of the probability current is known as theprobability four-current.

Definition (non-relativistic 3-current)

[edit]

Free spin-0 particle

[edit]

In non-relativistic quantum mechanics, the probability currentj of thewave functionΨ of a particle of massm in one dimension is defined as[2]j=2mi(ΨΨxΨΨx)=m{Ψ1iΨx}=m{ΨΨx},{\displaystyle j={\frac {\hbar }{2mi}}\left(\Psi ^{*}{\frac {\partial \Psi }{\partial x}}-\Psi {\frac {\partial \Psi ^{*}}{\partial x}}\right)={\frac {\hbar }{m}}\Re \left\{\Psi ^{*}{\frac {1}{i}}{\frac {\partial \Psi }{\partial x}}\right\}={\frac {\hbar }{m}}\Im \left\{\Psi ^{*}{\frac {\partial \Psi }{\partial x}}\right\},}where

Note that the probability current is proportional to aWronskianW(Ψ,Ψ).{\displaystyle W(\Psi ,\Psi ^{*}).}

In three dimensions, this generalizes toj=2mi(ΨΨΨΨ)=m{ΨiΨ}=m{ΨΨ},{\displaystyle \mathbf {j} ={\frac {\hbar }{2mi}}\left(\Psi ^{*}\mathbf {\nabla } \Psi -\Psi \mathbf {\nabla } \Psi ^{*}\right)={\frac {\hbar }{m}}\Re \left\{\Psi ^{*}{\frac {\nabla }{i}}\Psi \right\}={\frac {\hbar }{m}}\Im \left\{\Psi ^{*}\nabla \Psi \right\}\,,}where{\displaystyle \nabla } denotes thedel orgradientoperator. This can be simplified in terms of thekinetic momentum operator,p^=i{\displaystyle \mathbf {\hat {p}} =-i\hbar \nabla }to obtainj=12m(Ψp^Ψ+Ψ(p^Ψ)).{\displaystyle \mathbf {j} ={\frac {1}{2m}}\left(\Psi ^{*}\mathbf {\hat {p}} \Psi +\Psi \left(\mathbf {\hat {p}} \Psi \right)^{*}\right)\,.}

These definitions use the position basis (i.e. for a wavefunction inposition space), butmomentum space is possible. In fact, one can write the probability current operator as

j^(r)=p^|rr|+|rr|p^2m{\displaystyle \mathbf {\hat {j}} (\mathbf {r} )={\frac {\mathbf {\hat {p}} |\mathbf {r} \rangle \langle \mathbf {r} |+|\mathbf {r} \rangle \langle \mathbf {r} |\mathbf {\hat {p}} }{2m}}}

which do not depend on a particular choice of basis. The probability current is then the expectation of this operator,

j(r,t)=Ψ(t)|j^(r)|Ψ(t).{\displaystyle \mathbf {j} (\mathbf {r} ,t)=\langle \Psi (t)|{\hat {\mathbf {j} }}(\mathbf {r} )|\Psi (t)\rangle .}

Spin-0 particle in an electromagnetic field

[edit]
Main articles:electromagnetic field andkinetic momentum

The above definition should be modified for a system in an externalelectromagnetic field. InSI units, acharged particle of massm andelectric chargeq includes a term due to the interaction with the electromagnetic field;[3]j=12m[(Ψp^ΨΨp^Ψ)2qA|Ψ|2]{\displaystyle \mathbf {j} ={\frac {1}{2m}}\left[\left(\Psi ^{*}\mathbf {\hat {p}} \Psi -\Psi \mathbf {\hat {p}} \Psi ^{*}\right)-2q\mathbf {A} |\Psi |^{2}\right]}whereA =A(r,t) is themagnetic vector potential. The termqA has dimensions of momentum. Note thatp^=i{\displaystyle \mathbf {\hat {p}} =-i\hbar \nabla } used here is thecanonical momentum and is notgauge invariant, unlike thekinetic momentum operatorP^=iqA{\displaystyle \mathbf {\hat {P}} =-i\hbar \nabla -q\mathbf {A} }.

InGaussian units:j=12m[(Ψp^ΨΨp^Ψ)2qcA|Ψ|2]{\displaystyle \mathbf {j} ={\frac {1}{2m}}\left[\left(\Psi ^{*}\mathbf {\hat {p}} \Psi -\Psi \mathbf {\hat {p}} \Psi ^{*}\right)-2{\frac {q}{c}}\mathbf {A} |\Psi |^{2}\right]}wherec is thespeed of light.

Spin-s particle in an electromagnetic field

[edit]

If the particle hasspin, it has a correspondingmagnetic moment, so an extra term needs to be added incorporating the spin interaction with the electromagnetic field.

According to Landau-Lifschitz'sCourse of Theoretical Physics the electric current density is in Gaussian units:[4]je=q2m[(Ψp^ΨΨp^Ψ)2qcA|Ψ|2]+μScs×(ΨSΨ){\displaystyle \mathbf {j} _{e}={\frac {q}{2m}}\left[\left(\Psi ^{*}\mathbf {\hat {p}} \Psi -\Psi \mathbf {\hat {p}} \Psi ^{*}\right)-{\frac {2q}{c}}\mathbf {A} |\Psi |^{2}\right]+{\frac {\mu _{S}c}{s\hbar }}\nabla \times (\Psi ^{*}\mathbf {S} \Psi )}

And in SI units:je=q2m[(Ψp^ΨΨp^Ψ)2qA|Ψ|2]+μSs×(ΨSΨ){\displaystyle \mathbf {j} _{e}={\frac {q}{2m}}\left[\left(\Psi ^{*}\mathbf {\hat {p}} \Psi -\Psi \mathbf {\hat {p}} \Psi ^{*}\right)-2q\mathbf {A} |\Psi |^{2}\right]+{\frac {\mu _{S}}{s\hbar }}\nabla \times (\Psi ^{*}\mathbf {S} \Psi )}

Hence the probability current (density) is in SI units:j=je/q=12m[(Ψp^ΨΨp^Ψ)2qA|Ψ|2]+μSqs×(ΨSΨ){\displaystyle \mathbf {j} =\mathbf {j} _{e}/q={\frac {1}{2m}}\left[\left(\Psi ^{*}\mathbf {\hat {p}} \Psi -\Psi \mathbf {\hat {p}} \Psi ^{*}\right)-2q\mathbf {A} |\Psi |^{2}\right]+{\frac {\mu _{S}}{qs\hbar }}\nabla \times (\Psi ^{*}\mathbf {S} \Psi )}

whereS is thespin vector of the particle with correspondingspin magnetic momentμS andspin quantum numbers.

It is doubtful if this formula is valid for particles with an interior structure.[citation needed] Theneutron has zero charge but non-zero magnetic moment, soμSqs{\displaystyle {\frac {\mu _{S}}{qs\hbar }}} would be impossible (except×(ΨSΨ){\displaystyle \nabla \times (\Psi ^{*}\mathbf {S} \Psi )} would also be zero in this case). For composite particles with a non-zero charge – like theproton which has spin quantum number s=1/2 and μS= 2.7927·μN or thedeuteron (H-2 nucleus) which has s=1 and μS=0.8574·μN[5] – it is mathematically possible but doubtful.

Connection with classical mechanics

[edit]
See also:Madelung equations

The wave function can also be written in thecomplexexponential (polar) form:Ψ=ReiS/{\displaystyle \Psi =Re^{iS/\hbar }}whereR, S are real functions ofr andt.

Written this way, the probability density isρ=ΨΨ=R2{\displaystyle \rho =\Psi ^{*}\Psi =R^{2}} and the probability current is:j=2mi(ΨΨΨΨ)=2mi(ReiS/ReiS/ReiS/ReiS/)=2mi[ReiS/(eiS/R+iReiS/S)ReiS/(eiS/RiReiS/S)].{\displaystyle {\begin{aligned}\mathbf {j} &={\frac {\hbar }{2mi}}\left(\Psi ^{*}\mathbf {\nabla } \Psi -\Psi \mathbf {\nabla } \Psi ^{*}\right)\\[5pt]&={\frac {\hbar }{2mi}}\left(Re^{-iS/\hbar }\mathbf {\nabla } Re^{iS/\hbar }-Re^{iS/\hbar }\mathbf {\nabla } Re^{-iS/\hbar }\right)\\[5pt]&={\frac {\hbar }{2mi}}\left[Re^{-iS/\hbar }\left(e^{iS/\hbar }\mathbf {\nabla } R+{\frac {i}{\hbar }}Re^{iS/\hbar }\mathbf {\nabla } S\right)-Re^{iS/\hbar }\left(e^{-iS/\hbar }\mathbf {\nabla } R-{\frac {i}{\hbar }}Re^{-iS/\hbar }\mathbf {\nabla } S\right)\right].\end{aligned}}}

The exponentials andRR terms cancel:j=2mi[iR2S+iR2S].{\displaystyle \mathbf {j} ={\frac {\hbar }{2mi}}\left[{\frac {i}{\hbar }}R^{2}\mathbf {\nabla } S+{\frac {i}{\hbar }}R^{2}\mathbf {\nabla } S\right].}

Finally, combining and cancelling the constants, and replacingR2 withρ,j=ρSm.{\displaystyle \mathbf {j} =\rho {\frac {\mathbf {\nabla } S}{m}}.}Hence, the spatial variation of the phase of a wavefunction is said to characterize the probability flux of the wavefunction. If we take the familiar formula for the mass flux in hydrodynamics:j=ρv,{\displaystyle \mathbf {j} =\rho \mathbf {v} ,}

whereρ{\displaystyle \rho } is the mass density of the fluid andv is its velocity (also thegroup velocity of the wave). In the classical limit, we can associate the velocity withSm,{\displaystyle {\tfrac {\nabla S}{m}},} which is the same as equatingS with the classical momentump =mv however, it does not represent a physical velocity or momentum at a point since simultaneous measurement of position and velocity violatesuncertainty principle. This interpretation fits withHamilton–Jacobi theory, in whichp=S{\displaystyle \mathbf {p} =\nabla S}in Cartesian coordinates is given byS, whereS isHamilton's principal function.

Thede Broglie-Bohm theory equates the velocity withSm{\displaystyle {\tfrac {\nabla S}{m}}} in general (not only in the classical limit) so it is always well defined. It is an interpretation of quantum mechanics.

Motivation

[edit]

Continuity equation for quantum mechanics

[edit]
Main article:continuity equation

The definition of probability current and Schrödinger's equation can be used to derive thecontinuity equation, which hasexactly the same forms as those forhydrodynamics andelectromagnetism.[6]

For somewave functionΨ, let:

ρ(r,t)=|Ψ|2=Ψ(r,t)Ψ(r,t).{\displaystyle \rho (\mathbf {r} ,t)=|\Psi |^{2}=\Psi ^{*}(\mathbf {r} ,t)\Psi (\mathbf {r} ,t).}be theprobability density (probability per unit volume,* denotescomplex conjugate). Then,

ddtVdVρ=VdV(ψtψ+ψψt)=VdV[i(22m2ψ+Vψ)ψ+i(22m2ψ+Vψ)ψ]=VdVi2m[(2ψ)ψψ(2ψ)]=VdV(i2m(ψψψψ))=Sda(i2m(ψψψψ)){\displaystyle {\begin{aligned}{\frac {d}{dt}}\int _{\mathcal {V}}dV\,\rho &=\int _{\mathcal {V}}dV\,\left({\frac {\partial \psi }{\partial t}}\psi ^{*}+\psi {\frac {\partial \psi ^{*}}{\partial t}}\right)\\&=\int _{\mathcal {V}}dV\,\left[-{\frac {i}{\hbar }}\left(-{\frac {\hbar ^{2}}{2m}}\nabla ^{2}\psi +V\psi \right)\psi ^{*}+{\frac {i}{\hbar }}\left(-{\frac {\hbar ^{2}}{2m}}\nabla ^{2}\psi ^{*}+V\psi ^{*}\right)\psi \right]\\&=\int _{\mathcal {V}}dV\,{\frac {i\hbar }{2m}}\left[\left(\nabla ^{2}\psi \right)\psi ^{*}-\psi \left(\nabla ^{2}\psi ^{*}\right)\right]\\&=\int _{\mathcal {V}}dV\,\nabla \cdot \left({\frac {i\hbar }{2m}}(\psi ^{*}\nabla \psi -\psi \nabla \psi ^{*})\right)\\&=\int _{\mathcal {S}}d\mathbf {a} \cdot \left({\frac {i\hbar }{2m}}(\psi ^{*}\nabla \psi -\psi \nabla \psi ^{*})\right)\end{aligned}}}

whereV is any volume andS is the boundary ofV.

This is theconservation law for probability in quantum mechanics. The integral form is stated as:

V(|Ψ|2t)dV+V(j)dV=0{\displaystyle \int _{V}\left({\frac {\partial |\Psi |^{2}}{\partial t}}\right)\mathrm {d} V+\int _{V}\left(\mathbf {\nabla } \cdot \mathbf {j} \right)\mathrm {d} V=0}wherej=12m(Ψp^ΨΨp^Ψ)=i2m(ψψψψ)=mIm(ψψ){\displaystyle \mathbf {j} ={\frac {1}{2m}}\left(\Psi ^{*}{\hat {\mathbf {p} }}\Psi -\Psi {\hat {\mathbf {p} }}\Psi ^{*}\right)=-{\frac {i\hbar }{2m}}(\psi ^{*}\nabla \psi -\psi \nabla \psi ^{*})={\frac {\hbar }{m}}\operatorname {Im} (\psi ^{*}\nabla \psi )}is the probability current or probability flux (flow per unit area).

Here, equating the terms inside the integral gives thecontinuity equation for probability:tρ(r,t)+j=0,{\displaystyle {\frac {\partial }{\partial t}}\rho \left(\mathbf {r} ,t\right)+\nabla \cdot \mathbf {j} =0,}and the integral equation can also be restated using thedivergence theorem as:

tV|Ψ|2dV+{\displaystyle {\frac {\partial }{\partial t}}\int _{V}|\Psi |^{2}\mathrm {d} V+}\oiintS{\displaystyle \scriptstyle S}jdS=0{\displaystyle \mathbf {j} \cdot \mathrm {d} \mathbf {S} =0}.

In particular, ifΨ is a wavefunction describing a single particle, the integral in the first term of the preceding equation, sans time derivative, is the probability of obtaining a value withinV when the position of the particle is measured. The second term is then the rate at which probability is flowing out of the volumeV. Altogether the equation states that the time derivative of the probability of the particle being measured inV is equal to the rate at which probability flows intoV.

By taking the limit of volume integral to include all regions of space, a well-behaved wavefunction that goes to zero at infinities in the surface integral term implies that the time derivative of total probability is zero ie. the normalization condition is conserved.[7] This result is in agreement with the unitary nature of time evolution operators which preserve length of the vector by definition.

Conserved current for Klein–Gordon fields

[edit]

The probability (4-)current arises fromNoether's theorem as applied to theLagrangian theKlein-Gordon Lagrangian density

L=μϕμϕ+V(ϕϕ){\displaystyle {\mathcal {L}}=\partial _{\mu }\phi ^{*}\,\partial ^{\mu }\phi +V(\phi ^{*}\,\phi )}of the complex scalar fieldϕ:Rn+1C\phi :\mathbb {R} ^{n+1}\mapsto \mathbb {C}. This is invariant under the symmetry transformationϕϕ=ϕeiα.{\displaystyle \phi \mapsto \phi '=\phi \,e^{i\alpha }\,.} Definingδϕ=ϕϕ\delta \phi =\phi '-\phi we find the Noether currentjμ:=dLdq˙Qr=dLd(μ)ϕd(δϕ)dα|α=0+dLd(μ)ϕd(δϕ)dα|α=0=iϕ(μϕ)iϕ(μϕ){\displaystyle j^{\mu }:={\frac {d{\mathcal {L}}}{d{\dot {\mathbf {q} }}}}\cdot \mathbf {Q} _{r}={\frac {d{\mathcal {L}}}{d(\partial _{\mu })\phi }}\,{\frac {d(\delta \phi )}{d\alpha }}{\bigg |}_{\alpha =0}+{\frac {d{\mathcal {L}}}{d(\partial _{\mu })\phi ^{*}}}\,{\frac {d(\delta \phi ^{*})}{d\alpha }}{\bigg |}_{\alpha =0}=i\,\phi \,(\partial ^{\mu }\phi ^{*})-i\,\phi ^{*}\,(\partial ^{\mu }\phi )}which satisfies the continuity equation. HereQr{\displaystyle \mathbf {Q} _{r}} is the generator of the symmetry, which isd(δq)dαr{\displaystyle {\frac {d(\delta \mathbf {q} )}{d\alpha _{r}}}} in the case of a single parameterα{\displaystyle \alpha }.

The continuity equationμjμ=0{\displaystyle \partial _{\mu }j^{\mu }=0} is satisfied. However, note that now, the analog of the probability density is notϕϕ{\displaystyle \phi \phi ^{*}} but ratherϕtϕϕtϕ{\displaystyle \phi ^{*}\partial _{t}\phi -\phi \partial _{t}\phi ^{*}}. As this quantity can now be negative, we must interpret it as a charge density, with an associated current density and4-current.

Transmission and reflection through potentials

[edit]
Main articles:Transmission coefficient andReflection coefficient

In regions where astep potential orpotential barrier occurs, the probability current is related to the transmission and reflection coefficients, respectivelyT andR; they measure the extent the particles reflect from the potential barrier or are transmitted through it. Both satisfy:T+R=1,{\displaystyle T+R=1\,,}whereT andR can be defined by:T=|jtrans||jinc|,R=|jref||jinc|,{\displaystyle T={\frac {|\mathbf {j} _{\mathrm {trans} }|}{|\mathbf {j} _{\mathrm {inc} }|}}\,,\quad R={\frac {|\mathbf {j} _{\mathrm {ref} }|}{|\mathbf {j} _{\mathrm {inc} }|}}\,,}wherejinc,jref,jtrans are the incident, reflected and transmitted probability currents respectively, and the vertical bars indicate themagnitudes of the current vectors. The relation betweenT andR can be obtained from probability conservation:jtrans+jref=jinc.{\displaystyle \mathbf {j} _{\mathrm {trans} }+\mathbf {j} _{\mathrm {ref} }=\mathbf {j} _{\mathrm {inc} }\,.}

In terms of aunit vectornnormal to the barrier, these are equivalently:T=|jtransnjincn|,R=|jrefnjincn|,{\displaystyle T=\left|{\frac {\mathbf {j} _{\mathrm {trans} }\cdot \mathbf {n} }{\mathbf {j} _{\mathrm {inc} }\cdot \mathbf {n} }}\right|\,,\qquad R=\left|{\frac {\mathbf {j} _{\mathrm {ref} }\cdot \mathbf {n} }{\mathbf {j} _{\mathrm {inc} }\cdot \mathbf {n} }}\right|\,,}where the absolute values are required to preventT andR being negative.

Examples

[edit]

Plane wave

[edit]
Main article:plane wave

For aplane wave propagating in space:Ψ(r,t)=Aei(krωt){\displaystyle \Psi (\mathbf {r} ,t)=\,Ae^{i(\mathbf {k} \cdot {\mathbf {r} }-\omega t)}}the probability density is constant everywhere;ρ(r,t)=|A|2|Ψ|2t=0{\displaystyle \rho (\mathbf {r} ,t)=|A|^{2}\rightarrow {\frac {\partial |\Psi |^{2}}{\partial t}}=0}(that is, plane waves arestationary states) but the probability current is nonzero – the square of the absolute amplitude of the wave times the particle's speed;j(r,t)=|A|2km=ρpm=ρv{\displaystyle \mathbf {j} \left(\mathbf {r} ,t\right)=\left|A\right|^{2}{\hbar \mathbf {k} \over m}=\rho {\frac {\mathbf {p} }{m}}=\rho \mathbf {v} }

illustrating that the particle may be in motion even if its spatial probability density has no explicit time dependence.

Particle in a box

[edit]

For aparticle in a box, in one spatial dimension and of lengthL, confined to the region0<x<L{\displaystyle 0<x<L}, the energy eigenstates areΨn=2Lsin(nπLx){\displaystyle \Psi _{n}={\sqrt {\frac {2}{L}}}\sin \left({\frac {n\pi }{L}}x\right)}and zero elsewhere. The associated probability currents arejn=i2m(ΨnΨnxΨnΨnx)=0{\displaystyle j_{n}={\frac {i\hbar }{2m}}\left(\Psi _{n}^{*}{\frac {\partial \Psi _{n}}{\partial x}}-\Psi _{n}{\frac {\partial \Psi _{n}^{*}}{\partial x}}\right)=0}sinceΨn=Ψn{\displaystyle \Psi _{n}=\Psi _{n}^{*}}

Discrete definition

[edit]

For a particle in one dimension on2(Z),{\displaystyle \ell ^{2}(\mathbb {Z} ),} we have the HamiltonianH=Δ+V{\displaystyle H=-\Delta +V} whereΔ2ISS{\displaystyle -\Delta \equiv 2I-S-S^{\ast }} is the discrete Laplacian, withS being the right shift operator on2(Z).{\displaystyle \ell ^{2}(\mathbb {Z} ).} Then the probability current is defined asj2{Ψ¯ivΨ},{\displaystyle j\equiv 2\Im \left\{{\bar {\Psi }}iv\Psi \right\},} withv the velocity operator, equal tovi[X,H]{\displaystyle v\equiv -i[X,\,H]} andX is the position operator on2(Z).{\displaystyle \ell ^{2}\left(\mathbb {Z} \right).} SinceV is usually a multiplication operator on2(Z),{\displaystyle \ell ^{2}(\mathbb {Z} ),} we get to safely writei[X,H]=i[X,Δ]=i[X,SS]=iSiS.{\displaystyle -i[X,\,H]=-i[X,\,-\Delta ]=-i\left[X,\,-S-S^{\ast }\right]=iS-iS^{\ast }.}

As a result, we find:j(x)2{Ψ¯(x)ivΨ(x)}=2{Ψ¯(x)((SΨ)(x)+(SΨ)(x))}=2{Ψ¯(x)(Ψ(x1)+Ψ(x+1))}{\displaystyle {\begin{aligned}j\left(x\right)\equiv 2\Im \left\{{\bar {\Psi }}(x)iv\Psi (x)\right\}&=2\Im \left\{{\bar {\Psi }}(x)\left((-S\Psi )(x)+\left(S^{\ast }\Psi \right)(x)\right)\right\}\\&=2\Im \left\{{\bar {\Psi }}(x)\left(-\Psi (x-1)+\Psi (x+1)\right)\right\}\end{aligned}}}

References

[edit]
  1. ^Paul, Wolfgang; Baschnagel, Jörg (1999).Stochastic Processes : From Physics to Finance. Berlin: Springer. p. 84.ISBN 3-540-66560-9.
  2. ^McMahon, D. (2008).Quantum Field Theory. McGraw Hill.ISBN 978-0-07-154382-8.
  3. ^Ballentine, Leslie E. (1990).Quantum Mechanics. Prentice Hall Advanced Reference Series. Vol. 280. Englewood Cliffs: Prentice Hall.ISBN 0-13-747932-8.
  4. ^see page 473, equation 115.4,L.D. Landau, E.M. Lifschitz."COURSE OF THEORETICAL PHYSICS Vol. 3 – Quantum Mechanics"(PDF).ia803206.us.archive.org (3rd ed.). Retrieved29 April 2023.
  5. ^"Spin Properties of Nuclei".www2.chemistry.msu.edu. Retrieved29 April 2023.
  6. ^Quantum Mechanics, E. Abers, Pearson Ed., Addison Wesley, Prentice Hall Inc, 2004,ISBN 978-0-13-146100-0
  7. ^Sakurai, Jun John; Napolitano, Jim (2021).Modern quantum mechanics (3rd ed.). Cambridge: Cambridge University Press.ISBN 978-1-108-47322-4.

Further reading

[edit]
  • Resnick, R.; Eisberg, R. (1985).Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles (2nd ed.). John Wiley & Sons.ISBN 0-471-87373-X.
Retrieved from "https://en.wikipedia.org/w/index.php?title=Probability_current&oldid=1321737044"
Category:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp