Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Probabilistic metric space

From Wikipedia, the free encyclopedia
icon
This articleneeds additional citations forverification. Please helpimprove this article byadding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Probabilistic metric space" – news ·newspapers ·books ·scholar ·JSTOR
(July 2023) (Learn how and when to remove this message)

Inmathematics,probabilistic metric spaces are a generalization ofmetric spaces where thedistance no longer takes values in the non-negativereal numbersR0, but in distribution functions.[1]

LetD+ be the set of allprobability distribution functionsF such thatF(0) = 0 (F is a nondecreasing, leftcontinuous mapping fromR into [0, 1] such thatmax(F) = 1).

Then given anon-empty setS and a functionF:S ×SD+ where we denoteF(p, q) byFp,q for every (p, q) ∈S ×S, theordered pair (S, F) is said to be a probabilistic metric space if:

  • For allu andv inS,u =v if and only ifFu,v(x) = 1 for allx > 0.
  • For allu andv inS,Fu,v =Fv,u.
  • For allu,v andw inS,Fu,v(x) = 1 andFv,w(y) = 1 ⇒Fu,w(x +y) = 1 forx,y > 0.[2]

History

[edit]

Probabilistic metric spaces are initially introduced by Menger, which were termedstatistical metrics.[3] Shortly after, Wald criticized the generalizedtriangle inequality and proposed an alternative one.[4] However, both authors had come to the conclusion that in some respects the Wald inequality was too stringent a requirement to impose on all probability metric spaces, which is partly included in the work of Schweizer and Sklar.[5] Later, the probabilistic metric spaces found to be very suitable to be used with fuzzy sets[6] and further called fuzzy metric spaces[7]

Probability metric of random variables

[edit]

A probability metricD between tworandom variablesX andY may be defined, for example, asD(X,Y)=|xy|F(x,y)dxdy{\displaystyle D(X,Y)=\int _{-\infty }^{\infty }\int _{-\infty }^{\infty }|x-y|F(x,y)\,dx\,dy}whereF(x,y) denotes the joint probability density function of the random variablesX andY. IfX andY are independent from each other, then the equation above transforms intoD(X,Y)=|xy|f(x)g(y)dxdy{\displaystyle D(X,Y)=\int _{-\infty }^{\infty }\int _{-\infty }^{\infty }|x-y|f(x)g(y)\,dx\,dy}wheref(x) andg(y) are probability density functions ofX andY respectively.

One may easily show that such probability metrics do not satisfy the firstmetric axiom or satisfies itif, and only if, both of argumentsX andY are certain events described byDirac delta densityprobability distribution functions. In this case:D(X,Y)=|xy|δ(xμx)δ(yμy)dxdy=|μxμy|{\displaystyle D(X,Y)=\int _{-\infty }^{\infty }\int _{-\infty }^{\infty }|x-y|\delta (x-\mu _{x})\delta (y-\mu _{y})\,dx\,dy=|\mu _{x}-\mu _{y}|}the probability metric simply transforms into the metric betweenexpected valuesμx{\displaystyle \mu _{x}},μy{\displaystyle \mu _{y}} of the variablesX andY.

For all otherrandom variablesX,Y the probability metric does not satisfy theidentity of indiscernibles condition required to be satisfied by the metric of the metric space, that is:D(X,X)>0.{\displaystyle D\left(X,X\right)>0.}

Probability metric between two random variablesX andY, both havingnormal distributions and the samestandard deviationσ=0,σ=0.2,σ=0.4,σ=0.6,σ=0.8,σ=1{\displaystyle \sigma =0,\sigma =0.2,\sigma =0.4,\sigma =0.6,\sigma =0.8,\sigma =1} (beginning with the bottom curve).mxy=|μxμy|{\displaystyle m_{xy}=|\mu _{x}-\mu _{y}|} denotes a distance betweenmeans ofX andY.

Example

[edit]

For example if bothprobability distribution functions of random variablesX andY arenormal distributions (N) having the samestandard deviationσ{\displaystyle \sigma }, integratingD(X,Y){\displaystyle D\left(X,Y\right)} yields:DNN(X,Y)=μxy+2σπexp(μxy24σ2)μxyerfc(μxy2σ){\displaystyle D_{NN}(X,Y)=\mu _{xy}+{\frac {2\sigma }{\sqrt {\pi }}}\exp \left(-{\frac {\mu _{xy}^{2}}{4\sigma ^{2}}}\right)-\mu _{xy}\operatorname {erfc} \left({\frac {\mu _{xy}}{2\sigma }}\right)}whereμxy=|μxμy|,{\displaystyle \mu _{xy}=\left|\mu _{x}-\mu _{y}\right|,}anderfc(x){\displaystyle \operatorname {erfc} (x)} is the complementaryerror function.

In this case:limμxy0DNN(X,Y)=DNN(X,X)=2σπ.{\displaystyle \lim _{\mu _{xy}\to 0}D_{NN}(X,Y)=D_{NN}(X,X)={\frac {2\sigma }{\sqrt {\pi }}}.}

Probability metric of random vectors

[edit]

The probability metric of random variables may be extended into metricD(X,Y) ofrandom vectorsX,Y by substituting|xy|{\displaystyle |x-y|} with any metric operatord(x,y):D(X,Y)=ΩΩd(x,y)F(x,y)dΩxdΩy{\displaystyle D(\mathbf {X} ,\mathbf {Y} )=\int _{\Omega }\int _{\Omega }d(\mathbf {x} ,\mathbf {y} )F(\mathbf {x} ,\mathbf {y} )\,d\Omega _{x}d\Omega _{y}}whereF(X,Y) is the joint probability density function of random vectorsX andY. For example substitutingd(x,y) withEuclidean metric and providing the vectorsX andY are mutually independent would yield to:D(X,Y)=ΩΩi|xiyi|2F(x)G(y)dΩxdΩy.{\displaystyle D(\mathbf {X} ,\mathbf {Y} )=\int _{\Omega }\int _{\Omega }{\sqrt {\sum _{i}|x_{i}-y_{i}|^{2}}}F(\mathbf {x} )G(\mathbf {y} )\,d\Omega _{x}d\Omega _{y}.}

References

[edit]
  1. ^Sherwood, H. (1971)."Complete probabilistic metric spaces".Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete.20 (2):117–128.doi:10.1007/bf00536289.ISSN 0044-3719.
  2. ^Schweizer, Berthold; Sklar, Abe (1983).Probabilistic metric spaces. North-Holland series in probability and applied mathematics. New York: North-Holland.ISBN 978-0-444-00666-0.
  3. ^Menger, K. (2003), "Statistical Metrics",Selecta Mathematica, Springer Vienna, pp. 433–435,doi:10.1007/978-3-7091-6045-9_35,ISBN 978-3-7091-7294-0
  4. ^Wald, A. (1943), "On a Statistical Generalization of Metric Spaces",Proceedings of the National Academy of Sciences,29 (6):196–197,Bibcode:1943PNAS...29..196W,doi:10.1073/pnas.29.6.196,PMC 1078584,PMID 16578072
  5. ^Schweizer, B.; Sklar, A (2003), "Statistical Metrics",Selecta Mathematica, Springer Vienna, pp. 433–435,doi:10.1007/978-3-7091-6045-9_35,ISBN 978-3-7091-7294-0
  6. ^Bede, B. (2013).Mathematics of Fuzzy Sets and Fuzzy Logic. Studies in Fuzziness and Soft Computing. Vol. 295. Springer Berlin Heidelberg.doi:10.1007/978-3-642-35221-8.ISBN 978-3-642-35220-1.
  7. ^Kramosil, Ivan; Michálek, Jiří (1975)."Fuzzy metrics and statistical metric spaces"(PDF).Kybernetika.11 (5):336–344.
Retrieved from "https://en.wikipedia.org/w/index.php?title=Probabilistic_metric_space&oldid=1337657012"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp