Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Cauchy stress tensor

From Wikipedia, the free encyclopedia
(Redirected fromPrincipal stresses)
Representation of mechanical stress at every point within a deformed 3D object
Cauchy stress tensor
Components of stress in three dimensions
Common symbols
σ
SI unitpascal (Pa)
Other units
Pound per square inch (psi),bar
InSI base unitsPa =kgm−1s−2
Behaviour under
coord transformation
tensor
DimensionL1MT2{\displaystyle {\mathsf {L}}^{-1}{\mathsf {M}}{\mathsf {T}}^{-2}}

Incontinuum mechanics, theCauchy stress tensor (symbolσ{\displaystyle {\boldsymbol {\sigma }}}, named afterAugustin-Louis Cauchy), also calledtrue stress tensor[1] or simplystress tensor, completely defines the state ofstress at a point inside a material in thedeformed state, placement, or configuration. The second ordertensor consists of nine componentsσij{\displaystyle \sigma _{ij}} and relates a unit-lengthdirection vectore to thetraction vectorT(e) across a surface perpendicular toe:

T(e)=eσorTj(e)=iσijei.{\displaystyle \mathbf {T} ^{(\mathbf {e} )}=\mathbf {e} \cdot {\boldsymbol {\sigma }}\quad {\text{or}}\quad T_{j}^{(\mathbf {e} )}=\sum _{i}\sigma _{ij}e_{i}.}[a]

TheSI unit of both stress tensor and traction vector is thenewton per square metre (N/m2) orpascal (Pa), corresponding to the stress scalar. The unit vector isdimensionless.

The Cauchy stress tensor obeys thetensor transformation law under a change in the system of coordinates. A graphical representation of this transformation law is theMohr's circle for stress.

The Cauchy stress tensor is used forstress analysis of material bodies experiencingsmall deformations: it is a central concept in thelinear theory of elasticity. For large deformations, also calledfinite deformations, other measures of stress are required, such as thePiola–Kirchhoff stress tensor, theBiot stress tensor, and theKirchhoff stress tensor.

According to the principle ofconservation of linear momentum, if the continuum body is in static equilibrium it can be demonstrated that the components of the Cauchy stress tensor in every material point in the body satisfy the equilibrium equations (Cauchy's equations of motion for zero acceleration). At the same time, according to the principle ofconservation of angular momentum, equilibrium requires that the summation ofmoments with respect to an arbitrary point is zero, which leads to the conclusion that thestress tensor is symmetric, thus having only six independent stress components, instead of the original nine. However, in the presence of couple-stresses, i.e. moments per unit volume, the stress tensor is non-symmetric. This also is the case when theKnudsen number is close to one,Kn1{\displaystyle K_{n}\rightarrow 1}, or the continuum is anon-Newtonian fluid, which can lead to rotationally non-invariant fluids, such aspolymers.

There are certain invariants associated with the stress tensor, whose values do not depend upon the coordinate system chosen, or the area element upon which the stress tensor operates. These are the threeeigenvalues of the stress tensor, which are called theprincipal stresses.

Euler–Cauchy stress principle – stress vector

[edit]
Main article:Continuum mechanics
Figure 2.1a Internal distribution of contact forces and couple stresses on a differentialdS{\displaystyle dS} of the internal surfaceS{\displaystyle S} in a continuum, as a result of the interaction between the two portions of the continuum separated by the surface
Figure 2.1b Internal distribution of contact forces and couple stresses on a differentialdS{\displaystyle dS} of the internal surfaceS{\displaystyle S} in a continuum, as a result of the interaction between the two portions of the continuum separated by the surface
Figure 2.1c Stress vector on an internal surfaceS with normal vectorn

TheEuler–Cauchy stress principle states thatupon any surface that divides the body, the action of one part of the body on the other is equivalent (equipollent) to the system of distributed forces and couples on the surface dividing the body,[2] and it is represented by a fieldT(n){\displaystyle \mathbf {T} ^{(\mathbf {n} )}}, called thetraction vector, defined on the surfaceS{\displaystyle S} and assumed to depend continuously on the surface's normal unit vectorn{\displaystyle \mathbf {n} }.[3][4]: p.66–96 

To formulate the Euler–Cauchy stress principle, consider a surfaceS{\displaystyle S} passing through an internal material pointP{\displaystyle P} dividing the continuous body into two segments, as seen in Figure 2.1a or 2.1b (one may use either the cutting plane diagram or the diagram with the arbitrary volume inside the continuum enclosed by the surfaceS{\displaystyle S}).

Following the classical dynamics ofNewton andEuler, the motion of a material body is produced by the action of externally appliedforces which are assumed to be of two kinds:surface forcesF{\displaystyle \mathbf {F} } andbody forcesb{\displaystyle \mathbf {b} }.[5] Thus, the total forceF{\displaystyle {\mathcal {F}}} applied to a body or to a portion of the body can be expressed as:

F=b+F{\displaystyle {\mathcal {F}}=\mathbf {b} +\mathbf {F} }

Only surface forces will be discussed in this article as they are relevant to the Cauchy stress tensor.

When the body is subjected to external surface forces orcontact forcesF{\displaystyle \mathbf {F} }, followingEuler's equations of motion, internal contact forces and moments are transmitted from point to point in the body, and from one segment to the other through the dividing surfaceS{\displaystyle S}, due to the mechanical contact of one portion of the continuum onto the other (Figure 2.1a and 2.1b). On an element of areaΔS{\displaystyle \Delta S} containingP{\displaystyle P}, with normalvectorn{\displaystyle \mathbf {n} }, the force distribution is equipollent to a contact forceΔF{\displaystyle \Delta \mathbf {F} } exerted at pointP{\displaystyle P} and surface momentΔM{\displaystyle \Delta \mathbf {M} }. In particular, thecontact force is given by

ΔF=T(n)ΔS,{\displaystyle \Delta \mathbf {F} =\mathbf {T} ^{(\mathbf {n} )}\,\Delta S,}

whereT(n){\displaystyle \mathbf {T} ^{(\mathbf {n} )}} is themean surface traction.

Cauchy's stress principle asserts[6]: 47–102  that asΔS{\displaystyle \Delta S} tends to zero the ratioΔF/ΔS{\displaystyle \Delta \mathbf {F} /\Delta S} becomesdF/dS{\displaystyle d\mathbf {F} /dS} and the couple stress vectorΔM{\displaystyle \Delta \mathbf {M} } vanishes. In specific fields of continuum mechanics the couple stress is assumed not to vanish; however, classical branches of continuum mechanics address non-polar materials which do not consider couple stresses and body moments.

The resultant vectordF/dS{\displaystyle d\mathbf {F} /dS} is defined as thesurface traction,[7] also calledstress vector,[8]traction,[4] ortraction vector.[6] given byT(n)=Ti(n)ei{\displaystyle \mathbf {T} ^{(\mathbf {n} )}=T_{i}^{(\mathbf {n} )}\mathbf {e} _{i}} at the pointP{\displaystyle P} associated with a plane with a normal vectorn{\displaystyle \mathbf {n} }:

Ti(n)=limΔS0ΔFiΔS=dFidS.{\displaystyle T_{i}^{(\mathbf {n} )}=\lim _{\Delta S\to 0}{\frac {\Delta F_{i}}{\Delta S}}={dF_{i} \over dS}.}

This equation means that the stress vector depends on its location in the body and the orientation of the plane on which it is acting.

This implies that the balancing action of internal contact forces generates acontact force density orCauchy traction field[5]T(n,x,t){\displaystyle \mathbf {T} (\mathbf {n} ,\mathbf {x} ,t)} that represents a distribution of internal contact forces throughout the volume of the body in a particularconfiguration of the body at a given timet{\displaystyle t}. It is not avector field because it depends not only on the positionx{\displaystyle \mathbf {x} } of a particular material point, but also on the local orientation of the surface element as defined by its normal vectorn{\displaystyle \mathbf {n} }.[9]

Depending on the orientation of the plane under consideration, the stress vector may not necessarily be perpendicular to that plane,i.e. parallel ton{\displaystyle \mathbf {n} }, and can be resolved into two components (Figure 2.1c):

wheredFn{\displaystyle dF_{\mathrm {n} }} is the normal component of the forcedF{\displaystyle d\mathbf {F} } to the differential areadS{\displaystyle dS}
wheredFs{\displaystyle dF_{\mathrm {s} }} is the tangential component of the forcedF{\displaystyle d\mathbf {F} } to the differential surface areadS{\displaystyle dS}. The shear stress can be further decomposed into two mutually perpendicular vectors.

Cauchy's postulate

[edit]

According to theCauchy Postulate, the stress vectorT(n){\displaystyle \mathbf {T} ^{(\mathbf {n} )}} remains unchanged for all surfaces passing through the pointP{\displaystyle P} and having the same normal vectorn{\displaystyle \mathbf {n} } atP{\displaystyle P},[7][10] i.e., having a commontangent atP{\displaystyle P}. This means that the stress vector is a function of the normal vectorn{\displaystyle \mathbf {n} } only, and is not influenced by the curvature of the internal surfaces.

Cauchy's fundamental lemma

[edit]

A consequence of Cauchy's postulate isCauchy's Fundamental Lemma,[1][7][11] also called theCauchy reciprocal theorem,[12]: p.103–130  which states that the stress vectors acting on opposite sides of the same surface are equal in magnitude and opposite in direction. Cauchy's fundamental lemma is equivalent toNewton's third law of motion of action and reaction, and is expressed as

T(n)=T(n).{\displaystyle -\mathbf {T} ^{(\mathbf {n} )}=\mathbf {T} ^{(-\mathbf {n} )}.}

Cauchy's stress theorem—stress tensor

[edit]

The state of stress at a point in the body is then defined by all the stress vectorsT(n) associated with all planes (infinite in number) that pass through that point.[13] However, according toCauchy's fundamental theorem,[11] also calledCauchy's stress theorem,[1] merely by knowing the stress vectors on three mutually perpendicular planes, the stress vector on any other plane passing through that point can be found through coordinate transformation equations.

Cauchy's stress theorem states that there exists a second-ordertensor fieldσ(x, t), called the Cauchy stress tensor, independent ofn, such thatT is a linear function ofn:

T(n)=nσorTj(n)=σijni.{\displaystyle \mathbf {T} ^{(\mathbf {n} )}=\mathbf {n} \cdot {\boldsymbol {\sigma }}\quad {\text{or}}\quad T_{j}^{(\mathbf {n} )}=\sigma _{ij}n_{i}.}

This equation implies that the stress vectorT(n) at any pointP in a continuum associated with a plane with normal unit vectorn can be expressed as a function of the stress vectors on the planes perpendicular to the coordinate axes,i.e. in terms of the componentsσij of the stress tensorσ.

To prove this expression, consider atetrahedron with three faces oriented in the coordinate planes, and with an infinitesimal area dA oriented in an arbitrary direction specified by a normal unit vectorn (Figure 2.2). The tetrahedron is formed by slicing the infinitesimal element along an arbitrary plane with unit normaln. The stress vector on this plane is denoted byT(n). The stress vectors acting on the faces of the tetrahedron are denoted asT(e1),T(e2), andT(e3), and are by definition the componentsσij of the stress tensorσ. This tetrahedron is sometimes called theCauchy tetrahedron. The equilibrium of forces,i.e.Euler's first law of motion (Newton's second law of motion), gives:

T(n)dAT(e1)dA1T(e2)dA2T(e3)dA3=ρ(h3dA)a,{\displaystyle \mathbf {T} ^{(\mathbf {n} )}\,dA-\mathbf {T} ^{(\mathbf {e} _{1})}\,dA_{1}-\mathbf {T} ^{(\mathbf {e} _{2})}\,dA_{2}-\mathbf {T} ^{(\mathbf {e} _{3})}\,dA_{3}=\rho \left({\frac {h}{3}}dA\right)\mathbf {a} ,}
Figure 2.2. Stress vector acting on a plane with normal unit vectorn.
A note on the sign convention: The tetrahedron is formed by slicing a parallelepiped along an arbitrary planen. So, the force acting on the planen is the reaction exerted by the other half of the parallelepiped and has an opposite sign.

where the right-hand-side represents the product of the mass enclosed by the tetrahedron and its acceleration:ρ is the density,a is the acceleration, andh is the height of the tetrahedron, considering the planen as the base. The area of the faces of the tetrahedron perpendicular to the axes can be found by projecting dA into each face (using the dot product):

dA1=(ne1)dA=n1dA,{\displaystyle dA_{1}=\left(\mathbf {n} \cdot \mathbf {e} _{1}\right)dA=n_{1}\;dA,}
dA2=(ne2)dA=n2dA,{\displaystyle dA_{2}=\left(\mathbf {n} \cdot \mathbf {e} _{2}\right)dA=n_{2}\;dA,}
dA3=(ne3)dA=n3dA,{\displaystyle dA_{3}=\left(\mathbf {n} \cdot \mathbf {e} _{3}\right)dA=n_{3}\;dA,}

and then substituting into the equation to cancel out dA:

T(n)T(e1)n1T(e2)n2T(e3)n3=ρ(h3)a.{\displaystyle \mathbf {T} ^{(\mathbf {n} )}-\mathbf {T} ^{(\mathbf {e} _{1})}n_{1}-\mathbf {T} ^{(\mathbf {e} _{2})}n_{2}-\mathbf {T} ^{(\mathbf {e} _{3})}n_{3}=\rho \left({\frac {h}{3}}\right)\mathbf {a} .}

To consider the limiting case as the tetrahedron shrinks to a point,h must go to 0 (intuitively, the planen is translated alongn towardO). As a result, the right-hand-side of the equation approaches 0, so

T(n)=T(e1)n1+T(e2)n2+T(e3)n3.{\displaystyle \mathbf {T} ^{(\mathbf {n} )}=\mathbf {T} ^{(\mathbf {e} _{1})}n_{1}+\mathbf {T} ^{(\mathbf {e} _{2})}n_{2}+\mathbf {T} ^{(\mathbf {e} _{3})}n_{3}.}

Assuming a material element (see figure at the top of the page) with planes perpendicular to the coordinate axes of a Cartesian coordinate system, the stress vectors associated with each of the element planes,i.e.T(e1),T(e2), andT(e3) can be decomposed into a normal component and two shear components,i.e. components in the direction of the three coordinate axes. For the particular case of a surface with normalunit vector oriented in the direction of thex1-axis, denote the normal stress byσ11, and the two shear stresses asσ12 andσ13:

T(e1)=T1(e1)e1+T2(e1)e2+T3(e1)e3=σ11e1+σ12e2+σ13e3,{\displaystyle \mathbf {T} ^{(\mathbf {e} _{1})}=T_{1}^{(\mathbf {e} _{1})}\mathbf {e} _{1}+T_{2}^{(\mathbf {e} _{1})}\mathbf {e} _{2}+T_{3}^{(\mathbf {e} _{1})}\mathbf {e} _{3}=\sigma _{11}\mathbf {e} _{1}+\sigma _{12}\mathbf {e} _{2}+\sigma _{13}\mathbf {e} _{3},}
T(e2)=T1(e2)e1+T2(e2)e2+T3(e2)e3=σ21e1+σ22e2+σ23e3,{\displaystyle \mathbf {T} ^{(\mathbf {e} _{2})}=T_{1}^{(\mathbf {e} _{2})}\mathbf {e} _{1}+T_{2}^{(\mathbf {e} _{2})}\mathbf {e} _{2}+T_{3}^{(\mathbf {e} _{2})}\mathbf {e} _{3}=\sigma _{21}\mathbf {e} _{1}+\sigma _{22}\mathbf {e} _{2}+\sigma _{23}\mathbf {e} _{3},}
T(e3)=T1(e3)e1+T2(e3)e2+T3(e3)e3=σ31e1+σ32e2+σ33e3,{\displaystyle \mathbf {T} ^{(\mathbf {e} _{3})}=T_{1}^{(\mathbf {e} _{3})}\mathbf {e} _{1}+T_{2}^{(\mathbf {e} _{3})}\mathbf {e} _{2}+T_{3}^{(\mathbf {e} _{3})}\mathbf {e} _{3}=\sigma _{31}\mathbf {e} _{1}+\sigma _{32}\mathbf {e} _{2}+\sigma _{33}\mathbf {e} _{3},}

In index notation this is

T(ei)=Tj(ei)ej=σijej.{\displaystyle \mathbf {T} ^{(\mathbf {e} _{i})}=T_{j}^{(\mathbf {e} _{i})}\mathbf {e} _{j}=\sigma _{ij}\mathbf {e} _{j}.}

The nine componentsσij of the stress vectors are the components of a second-order Cartesian tensor called theCauchy stress tensor, which can be used to completely define the state of stress at a point and is given by

σ=σij=[T(e1)T(e2)T(e3)]=[σ11σ12σ13σ21σ22σ23σ31σ32σ33][σxxσxyσxzσyxσyyσyzσzxσzyσzz][σxτxyτxzτyxσyτyzτzxτzyσz],{\displaystyle {\boldsymbol {\sigma }}=\sigma _{ij}=\left[{\begin{matrix}\mathbf {T} ^{(\mathbf {e} _{1})}\\\mathbf {T} ^{(\mathbf {e} _{2})}\\\mathbf {T} ^{(\mathbf {e} _{3})}\\\end{matrix}}\right]=\left[{\begin{matrix}\sigma _{11}&\sigma _{12}&\sigma _{13}\\\sigma _{21}&\sigma _{22}&\sigma _{23}\\\sigma _{31}&\sigma _{32}&\sigma _{33}\\\end{matrix}}\right]\equiv \left[{\begin{matrix}\sigma _{xx}&\sigma _{xy}&\sigma _{xz}\\\sigma _{yx}&\sigma _{yy}&\sigma _{yz}\\\sigma _{zx}&\sigma _{zy}&\sigma _{zz}\\\end{matrix}}\right]\equiv \left[{\begin{matrix}\sigma _{x}&\tau _{xy}&\tau _{xz}\\\tau _{yx}&\sigma _{y}&\tau _{yz}\\\tau _{zx}&\tau _{zy}&\sigma _{z}\\\end{matrix}}\right],}

whereσ11,σ22, andσ33 are normal stresses, andσ12,σ13,σ21,σ23,σ31, andσ32 are shear stresses. The first indexi indicates that the stress acts on a plane normal to theXi -axis, and the second indexj denotes the direction in which the stress acts (for example,σ12 implies that the stress is acting on the plane that is normal to the 1st axis i.e.,X1, and acts along the 2nd axis i.e.,X2). A stress component is positive if it acts in the positive direction of the coordinate axes, and if the plane where it acts has an outward normal vector pointing in the positive coordinate direction.

Thus, using the components of the stress tensor

T(n)=T(e1)n1+T(e2)n2+T(e3)n3=i=13T(ei)ni=(σijej)ni=σijniej{\displaystyle {\begin{aligned}\mathbf {T} ^{(\mathbf {n} )}&=\mathbf {T} ^{(\mathbf {e} _{1})}n_{1}+\mathbf {T} ^{(\mathbf {e} _{2})}n_{2}+\mathbf {T} ^{(\mathbf {e} _{3})}n_{3}\\&=\sum _{i=1}^{3}\mathbf {T} ^{(\mathbf {e} _{i})}n_{i}\\&=\left(\sigma _{ij}\mathbf {e} _{j}\right)n_{i}\\&=\sigma _{ij}n_{i}\mathbf {e} _{j}\end{aligned}}}

or, equivalently,

Tj(n)=σijni.{\displaystyle T_{j}^{(\mathbf {n} )}=\sigma _{ij}n_{i}.}

Alternatively, in matrix form we have

[T1(n)T2(n)T3(n)]=[n1n2n3][σ11σ12σ13σ21σ22σ23σ31σ32σ33].{\displaystyle \left[{\begin{matrix}T_{1}^{(\mathbf {n} )}&T_{2}^{(\mathbf {n} )}&T_{3}^{(\mathbf {n} )}\end{matrix}}\right]=\left[{\begin{matrix}n_{1}&n_{2}&n_{3}\end{matrix}}\right]\cdot \left[{\begin{matrix}\sigma _{11}&\sigma _{12}&\sigma _{13}\\\sigma _{21}&\sigma _{22}&\sigma _{23}\\\sigma _{31}&\sigma _{32}&\sigma _{33}\\\end{matrix}}\right].}

TheVoigt notation representation of the Cauchy stress tensor takes advantage of thesymmetry of the stress tensor to express the stress as a six-dimensional vector of the form:

σ=[σ1σ2σ3σ4σ5σ6]T[σ11σ22σ33σ23σ13σ12]T.{\displaystyle {\boldsymbol {\sigma }}={\begin{bmatrix}\sigma _{1}&\sigma _{2}&\sigma _{3}&\sigma _{4}&\sigma _{5}&\sigma _{6}\end{bmatrix}}^{\textsf {T}}\equiv {\begin{bmatrix}\sigma _{11}&\sigma _{22}&\sigma _{33}&\sigma _{23}&\sigma _{13}&\sigma _{12}\end{bmatrix}}^{\textsf {T}}.}

The Voigt notation is used extensively in representing stress–strain relations in solid mechanics and for computational efficiency in numerical structural mechanics software.

Transformation rule of the stress tensor

[edit]

It can be shown that the stress tensor is acontravariant second order tensor, which is a statement of how it transforms under a change of the coordinate system. From anxi-system to an xi'-system, the componentsσij in the initial system are transformed into the componentsσij′ in the new system according to the tensor transformation rule (Figure 2.4):

σij=aimajnσmnorσ=AσAT,{\displaystyle \sigma '_{ij}=a_{im}a_{jn}\sigma _{mn}\quad {\text{or}}\quad {\boldsymbol {\sigma }}'=\mathbf {A} {\boldsymbol {\sigma }}\mathbf {A} ^{\textsf {T}},}

whereA is arotation matrix with componentsaij. In matrix form this is

[σ11σ12σ13σ21σ22σ23σ31σ32σ33]=[a11a12a13a21a22a23a31a32a33][σ11σ12σ13σ21σ22σ23σ31σ32σ33][a11a21a31a12a22a32a13a23a33].{\displaystyle \left[{\begin{matrix}\sigma '_{11}&\sigma '_{12}&\sigma '_{13}\\\sigma '_{21}&\sigma '_{22}&\sigma '_{23}\\\sigma '_{31}&\sigma '_{32}&\sigma '_{33}\\\end{matrix}}\right]=\left[{\begin{matrix}a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23}\\a_{31}&a_{32}&a_{33}\\\end{matrix}}\right]\left[{\begin{matrix}\sigma _{11}&\sigma _{12}&\sigma _{13}\\\sigma _{21}&\sigma _{22}&\sigma _{23}\\\sigma _{31}&\sigma _{32}&\sigma _{33}\\\end{matrix}}\right]\left[{\begin{matrix}a_{11}&a_{21}&a_{31}\\a_{12}&a_{22}&a_{32}\\a_{13}&a_{23}&a_{33}\\\end{matrix}}\right].}
Figure 2.4 Transformation of the stress tensor

Expanding thematrix operation, and simplifying terms using thesymmetry of the stress tensor, gives

σ11=a112σ11+a122σ22+a132σ33+2a11a12σ12+2a11a13σ13+2a12a13σ23,σ22=a212σ11+a222σ22+a232σ33+2a21a22σ12+2a21a23σ13+2a22a23σ23,σ33=a312σ11+a322σ22+a332σ33+2a31a32σ12+2a31a33σ13+2a32a33σ23,σ12=a11a21σ11+a12a22σ22+a13a23σ33+(a11a22+a12a21)σ12+(a12a23+a13a22)σ23+(a11a23+a13a21)σ13,σ23=a21a31σ11+a22a32σ22+a23a33σ33+(a21a32+a22a31)σ12+(a22a33+a23a32)σ23+(a21a33+a23a31)σ13,σ13=a11a31σ11+a12a32σ22+a13a33σ33+(a11a32+a12a31)σ12+(a12a33+a13a32)σ23+(a11a33+a13a31)σ13.{\displaystyle {\begin{aligned}\sigma _{11}'={}&a_{11}^{2}\sigma _{11}+a_{12}^{2}\sigma _{22}+a_{13}^{2}\sigma _{33}+2a_{11}a_{12}\sigma _{12}+2a_{11}a_{13}\sigma _{13}+2a_{12}a_{13}\sigma _{23},\\\sigma _{22}'={}&a_{21}^{2}\sigma _{11}+a_{22}^{2}\sigma _{22}+a_{23}^{2}\sigma _{33}+2a_{21}a_{22}\sigma _{12}+2a_{21}a_{23}\sigma _{13}+2a_{22}a_{23}\sigma _{23},\\\sigma _{33}'={}&a_{31}^{2}\sigma _{11}+a_{32}^{2}\sigma _{22}+a_{33}^{2}\sigma _{33}+2a_{31}a_{32}\sigma _{12}+2a_{31}a_{33}\sigma _{13}+2a_{32}a_{33}\sigma _{23},\\\sigma _{12}'={}&a_{11}a_{21}\sigma _{11}+a_{12}a_{22}\sigma _{22}+a_{13}a_{23}\sigma _{33}\\&+(a_{11}a_{22}+a_{12}a_{21})\sigma _{12}+(a_{12}a_{23}+a_{13}a_{22})\sigma _{23}+(a_{11}a_{23}+a_{13}a_{21})\sigma _{13},\\\sigma _{23}'={}&a_{21}a_{31}\sigma _{11}+a_{22}a_{32}\sigma _{22}+a_{23}a_{33}\sigma _{33}\\&+(a_{21}a_{32}+a_{22}a_{31})\sigma _{12}+(a_{22}a_{33}+a_{23}a_{32})\sigma _{23}+(a_{21}a_{33}+a_{23}a_{31})\sigma _{13},\\\sigma _{13}'={}&a_{11}a_{31}\sigma _{11}+a_{12}a_{32}\sigma _{22}+a_{13}a_{33}\sigma _{33}\\&+(a_{11}a_{32}+a_{12}a_{31})\sigma _{12}+(a_{12}a_{33}+a_{13}a_{32})\sigma _{23}+(a_{11}a_{33}+a_{13}a_{31})\sigma _{13}.\end{aligned}}}

TheMohr circle for stress is a graphical representation of this transformation of stresses.

Normal and shear stresses

[edit]

The magnitude of thenormal stress componentσn of any stress vectorT(n) acting on an arbitrary plane with normal unit vectorn at a given point, in terms of the componentsσij of the stress tensorσ, is thedot product of the stress vector and the normal unit vector:

σn=T(n)n=Ti(n)ni=σijninj.{\displaystyle {\begin{aligned}\sigma _{\mathrm {n} }&=\mathbf {T} ^{(\mathbf {n} )}\cdot \mathbf {n} \\&=T_{i}^{(\mathbf {n} )}n_{i}\\&=\sigma _{ij}n_{i}n_{j}.\end{aligned}}}

The magnitude of the shear stress componentτn, acting orthogonal to the vectorn, can then be found using thePythagorean theorem:

τn=(T(n))2σn2=Ti(n)Ti(n)σn2,{\displaystyle {\begin{aligned}\tau _{\mathrm {n} }&={\sqrt {\left(T^{(\mathbf {n} )}\right)^{2}-\sigma _{\mathrm {n} }^{2}}}\\&={\sqrt {T_{i}^{(\mathbf {n} )}T_{i}^{(\mathbf {n} )}-\sigma _{\mathrm {n} }^{2}}},\end{aligned}}}

where

(T(n))2=Ti(n)Ti(n)=(σijnj)(σiknk)=σijσiknjnk.{\displaystyle \left(T^{(\mathbf {n} )}\right)^{2}=T_{i}^{(\mathbf {n} )}T_{i}^{(\mathbf {n} )}=\left(\sigma _{ij}n_{j}\right)\left(\sigma _{ik}n_{k}\right)=\sigma _{ij}\sigma _{ik}n_{j}n_{k}.}

Balance laws – Cauchy's equations of motion

[edit]
Figure 4. Continuum body in equilibrium

Cauchy's first law of motion

[edit]

According to the principle ofconservation of linear momentum, if the continuum body is in static equilibrium it can be demonstrated that the components of the Cauchy stress tensor in every material point in the body satisfy the equilibrium equations:

σji,j+Fi=0,{\displaystyle \sigma _{ji,j}+F_{i}=0,}

whereσji,j=jjσji{\displaystyle \sigma _{ji,j}=\sum _{j}\partial _{j}\sigma _{ji}}

For example, for ahydrostatic fluid in equilibrium conditions, the stress tensor takes on the form:

σij=pδij,{\displaystyle {\sigma _{ij}}=-p{\delta _{ij}},}

wherep{\displaystyle p} is the hydrostatic pressure, andδij {\displaystyle {\delta _{ij}}\ } is theKronecker delta.

Derivation of equilibrium equations
Consider a continuum body (see Figure 4) occupying a volumeV{\displaystyle V}, having a surface areaS{\displaystyle S}, with defined traction or surface forcesTi(n){\displaystyle T_{i}^{(n)}} per unit area acting on every point of the body surface, and body forcesFi{\displaystyle F_{i}} per unit of volume on every point within the volumeV{\displaystyle V}. Thus, if the body is inequilibrium the resultant force acting on the volume is zero, thus:
STi(n)dS+VFidV=0{\displaystyle \int _{S}T_{i}^{(n)}dS+\int _{V}F_{i}dV=0}

By definition the stress vector isTi(n)=σjinj{\displaystyle T_{i}^{(n)}=\sigma _{ji}n_{j}}, then

SσjinjdS+VFidV=0{\displaystyle \int _{S}\sigma _{ji}n_{j}\,dS+\int _{V}F_{i}\,dV=0}

Using theGauss's divergence theorem to convert a surface integral to a volume integral gives

Vσji,jdV+VFidV=0{\displaystyle \int _{V}\sigma _{ji,j}\,dV+\int _{V}F_{i}\,dV=0}
V(σji,j+Fi)dV=0{\displaystyle \int _{V}(\sigma _{ji,j}+F_{i}\,)dV=0}

For an arbitrary volume the integral vanishes, and we have theequilibrium equations

σji,j+Fi=0{\displaystyle \sigma _{ji,j}+F_{i}=0}

Cauchy's second law of motion

[edit]

According to the principle ofconservation of angular momentum, equilibrium requires that the summation ofmoments with respect to an arbitrary point is zero, which leads to the conclusion that the stress tensor issymmetric, thus having only six independent stress components, instead of the original nine:

σij=σji{\displaystyle \sigma _{ij}=\sigma _{ji}}
Derivation of symmetry of the stress tensor
Summing moments about pointO (Figure 4) the resultant moment is zero as the body is in equilibrium. Thus,
MO=S(r×T)dS+V(r×F)dV=00=SεijkxjTk(n)dS+VεijkxjFkdV{\displaystyle {\begin{aligned}M_{O}&=\int _{S}(\mathbf {r} \times \mathbf {T} )dS+\int _{V}(\mathbf {r} \times \mathbf {F} )dV=0\\0&=\int _{S}\varepsilon _{ijk}x_{j}T_{k}^{(n)}dS+\int _{V}\varepsilon _{ijk}x_{j}F_{k}dV\\\end{aligned}}}

wherer{\displaystyle \mathbf {r} } is the position vector and is expressed as

r=xjej{\displaystyle \mathbf {r} =x_{j}\mathbf {e} _{j}}

andεijk{\displaystyle \varepsilon _{ijk}} is theLevi-Civita symbol.

Knowing thatTk(n)=σmknm{\displaystyle T_{k}^{(n)}=\sigma _{mk}n_{m}} and using Gauss's divergence theorem to change from a surface integral to a volume integral, we have

0=SεijkxjσmknmdS+VεijkxjFkdV=V(εijkxjσmk),mdV+VεijkxjFkdV=V(εijkxj,mσmk+εijkxjσmk,m)dV+VεijkxjFkdV=V(εijkxj,mσmk)dV+Vεijkxj(σmk,m+Fk)dV{\displaystyle {\begin{aligned}0&=\int _{S}\varepsilon _{ijk}x_{j}\sigma _{mk}n_{m}\,dS+\int _{V}\varepsilon _{ijk}x_{j}F_{k}\,dV\\&=\int _{V}(\varepsilon _{ijk}x_{j}\sigma _{mk})_{,m}dV+\int _{V}\varepsilon _{ijk}x_{j}F_{k}\,dV\\&=\int _{V}(\varepsilon _{ijk}x_{j,m}\sigma _{mk}+\varepsilon _{ijk}x_{j}\sigma _{mk,m})dV+\int _{V}\varepsilon _{ijk}x_{j}F_{k}\,dV\\&=\int _{V}(\varepsilon _{ijk}x_{j,m}\sigma _{mk})dV+\int _{V}\varepsilon _{ijk}x_{j}(\sigma _{mk,m}+F_{k})dV\\\end{aligned}}}

The second integral is zero as it contains the equilibrium equations. This leaves the first integral, wherexj,m=δjm{\displaystyle x_{j,m}=\delta _{jm}}, therefore

V(εijkσjk)dV=0{\displaystyle \int _{V}(\varepsilon _{ijk}\sigma _{jk})dV=0}

For an arbitrary volume V, we then have

εijkσjk=0,{\displaystyle \varepsilon _{ijk}\sigma _{jk}=0,}

which is satisfied at every point within the body. Expanding this equation we have

σ12=σ21{\displaystyle \sigma _{12}=\sigma _{21}},σ23=σ32{\displaystyle \sigma _{23}=\sigma _{32}}, andσ13=σ31{\displaystyle \sigma _{13}=\sigma _{31}}

or in general

σij=σji{\displaystyle \sigma _{ij}=\sigma _{ji}}

This proves that the stress tensor is symmetric

However, in the presence of couple-stresses, i.e. moments per unit volume, the stress tensor is non-symmetric. This also is the case when theKnudsen number is close to one,Kn1{\displaystyle K_{n}\rightarrow 1}, or the continuum is a non-Newtonian fluid, which can lead to rotationally non-invariant fluids, such aspolymers.

Principal stresses and stress invariants

[edit]
Stress components on a 2D rotating element. Example of how stress components vary on the faces (edges) of a rectangular element as the angle of its orientation is varied.Principal stresses occur when the shear stresses simultaneously disappear from all faces. The orientation at which this occurs gives theprincipal directions. In this example, when the rectangle is horizontal, the stresses are given by[σ11σ12σ21σ22]=[10101015].{\displaystyle \left[{\begin{smallmatrix}\sigma _{11}&\sigma _{12}\\\sigma _{21}&\sigma _{22}\end{smallmatrix}}\right]=\left[{\begin{smallmatrix}-10&10\\10&15\end{smallmatrix}}\right].}

At every point in a stressed body there are at least three planes, calledprincipal planes, with normal vectorsn{\displaystyle \mathbf {n} }, calledprincipal directions, where the corresponding stress vector is perpendicular to the plane, i.e., parallel or in the same direction as the normal vectorn{\displaystyle \mathbf {n} }, and where there are no normal shear stressesτn{\displaystyle \tau _{\mathrm {n} }}. The three stresses normal to these principal planes are calledprincipal stresses.

The componentsσij{\displaystyle \sigma _{ij}} of the stress tensor depend on the orientation of the coordinate system at the point under consideration. However, the stress tensor itself is a physical quantity and as such, it is independent of the coordinate system chosen to represent it. There are certaininvariants associated with every tensor which are also independent of the coordinate system. For example, a vector is a simple tensor of rank one. In three dimensions, it has three components. The value of these components will depend on the coordinate system chosen to represent the vector, but themagnitude of the vector is a physical quantity (a scalar) and is independent of theCartesian coordinate system chosen to represent the vector (so long as it isnormal). Similarly, every second rank tensor (such as the stress and the strain tensors) has three independent invariant quantities associated with it. One set of such invariants are the principal stresses of the stress tensor, which are just the eigenvalues of the stress tensor. Their direction vectors are the principal directions oreigenvectors.

A stress vector parallel to the normal unit vectorn{\displaystyle \mathbf {n} } is given by:

T(n)=λn=σnn,{\displaystyle \mathbf {T} ^{(\mathbf {n} )}=\lambda \mathbf {n} =\mathbf {\sigma } _{\mathrm {n} }\mathbf {n} ,}

whereλ{\displaystyle \lambda } is a constant of proportionality, and in this particular case corresponds to the magnitudesσn{\displaystyle \sigma _{\mathrm {n} }} of the normal stress vectors or principal stresses.

Knowing thatTi(n)=σijnj{\displaystyle T_{i}^{(n)}=\sigma _{ij}n_{j}} and1{\displaystyle {1}}, we have

Ti(n)=λniσijnj=λniσijnjλni=0(σijλδij)nj=0{\displaystyle {\begin{aligned}T_{i}^{(n)}&=\lambda n_{i}\\\sigma _{ij}n_{j}&=\lambda n_{i}\\\sigma _{ij}n_{j}-\lambda n_{i}&=0\\\left(\sigma _{ij}-\lambda \delta _{ij}\right)n_{j}&=0\\\end{aligned}}}

This is ahomogeneous system, i.e. equal to zero, of three linear equations wherenj{\displaystyle n_{j}} are the unknowns. To obtain a nontrivial (non-zero) solution fornj{\displaystyle n_{j}}, the matrix determinant of the coefficients must be equal to zero, i.e. the system is singular. Thus,

|σijλδij|=|σ11λσ12σ13σ21σ22λσ23σ31σ32σ33λ|=0{\displaystyle \left|\sigma _{ij}-\lambda \delta _{ij}\right|={\begin{vmatrix}\sigma _{11}-\lambda &\sigma _{12}&\sigma _{13}\\\sigma _{21}&\sigma _{22}-\lambda &\sigma _{23}\\\sigma _{31}&\sigma _{32}&\sigma _{33}-\lambda \\\end{vmatrix}}=0}

Expanding the determinant leads to thecharacteristic equation

|σijλδij|=λ3+I1λ2I2λ+I3=0{\displaystyle \left|\sigma _{ij}-\lambda \delta _{ij}\right|=-\lambda ^{3}+I_{1}\lambda ^{2}-I_{2}\lambda +I_{3}=0}

where

I1=σ11+σ22+σ33=σkk=tr(σ)I2=|σ22σ23σ32σ33|+|σ11σ13σ31σ33|+|σ11σ12σ21σ22|=σ11σ22+σ22σ33+σ11σ33σ122σ232σ312=12(σiiσjjσijσji)=12[(tr(σ))2tr(σ2)]I3=det(σij)=det(σ)=σ11σ22σ33+2σ12σ23σ31σ122σ33σ232σ11σ312σ22{\displaystyle {\begin{aligned}I_{1}&=\sigma _{11}+\sigma _{22}+\sigma _{33}\\&=\sigma _{kk}={\text{tr}}({\boldsymbol {\sigma }})\\[4pt]I_{2}&={\begin{vmatrix}\sigma _{22}&\sigma _{23}\\\sigma _{32}&\sigma _{33}\\\end{vmatrix}}+{\begin{vmatrix}\sigma _{11}&\sigma _{13}\\\sigma _{31}&\sigma _{33}\\\end{vmatrix}}+{\begin{vmatrix}\sigma _{11}&\sigma _{12}\\\sigma _{21}&\sigma _{22}\\\end{vmatrix}}\\&=\sigma _{11}\sigma _{22}+\sigma _{22}\sigma _{33}+\sigma _{11}\sigma _{33}-\sigma _{12}^{2}-\sigma _{23}^{2}-\sigma _{31}^{2}\\&={\frac {1}{2}}\left(\sigma _{ii}\sigma _{jj}-\sigma _{ij}\sigma _{ji}\right)={\frac {1}{2}}\left[\left({\text{tr}}({\boldsymbol {\sigma }})\right)^{2}-{\text{tr}}\left({\boldsymbol {\sigma }}^{2}\right)\right]\\[4pt]I_{3}&=\det(\sigma _{ij})=\det({\boldsymbol {\sigma }})\\&=\sigma _{11}\sigma _{22}\sigma _{33}+2\sigma _{12}\sigma _{23}\sigma _{31}-\sigma _{12}^{2}\sigma _{33}-\sigma _{23}^{2}\sigma _{11}-\sigma _{31}^{2}\sigma _{22}\\\end{aligned}}}

The characteristic equation has three real rootsλi{\displaystyle \lambda _{i}} (i.e. with a zeroimaginary component) due to the stress tensor being symmetric. Theσ1=max(λ1,λ2,λ3){\displaystyle \sigma _{1}=\max \left(\lambda _{1},\lambda _{2},\lambda _{3}\right)},σ3=min(λ1,λ2,λ3){\displaystyle \sigma _{3}=\min \left(\lambda _{1},\lambda _{2},\lambda _{3}\right)} andσ2=I1σ1σ3{\displaystyle \sigma _{2}=I_{1}-\sigma _{1}-\sigma _{3}}, are the principal stresses, functions of the eigenvaluesλi{\displaystyle \lambda _{i}}. The eigenvalues are the roots of thecharacteristic polynomial. The principal stresses are unique for a given stress tensor. Therefore, from the characteristic equation, the coefficientsI1{\displaystyle I_{1}},I2{\displaystyle I_{2}} andI3{\displaystyle I_{3}}, called the first, second, and thirdstress invariants, respectively, always have the same value regardless of the coordinate system's orientation.

For each eigenvalue, there is a non-trivial solution fornj{\displaystyle n_{j}} in the equation(σijλδij)nj=0{\displaystyle \left(\sigma _{ij}-\lambda \delta _{ij}\right)n_{j}=0}. These solutions are the principal directions oreigenvectors defining the plane where the principal stresses act. The principal stresses and principal directions characterize the stress at a point and are independent of the orientation.

A coordinate system with axes oriented to the principal directions implies that the normal stresses are the principal stresses and the stress tensor is represented by a diagonal matrix:

σij=[σ1000σ2000σ3]{\displaystyle \sigma _{ij}={\begin{bmatrix}\sigma _{1}&0&0\\0&\sigma _{2}&0\\0&0&\sigma _{3}\end{bmatrix}}}

The principal stresses can be combined to form the stress invariants,I1{\displaystyle I_{1}},I2{\displaystyle I_{2}}, andI3{\displaystyle I_{3}}. The first and third invariant are the trace and determinant respectively, of the stress tensor. Thus,

I1=σ1+σ2+σ3I2=σ1σ2+σ2σ3+σ3σ1I3=σ1σ2σ3{\displaystyle {\begin{aligned}I_{1}&=\sigma _{1}+\sigma _{2}+\sigma _{3}\\I_{2}&=\sigma _{1}\sigma _{2}+\sigma _{2}\sigma _{3}+\sigma _{3}\sigma _{1}\\I_{3}&=\sigma _{1}\sigma _{2}\sigma _{3}\\\end{aligned}}}

Because of its simplicity, the principal coordinate system is often useful when considering the state of the elastic medium at a particular point. Principal stresses are often expressed in the following equation for evaluating stresses in the x and y directions or axial and bending stresses on a part.[14]: p.58–59  The principal normal stresses can then be used to calculate thevon Mises stress and ultimately the safety factor and margin of safety.

σ1,σ2=σx+σy2±(σxσy2)2+τxy2.{\displaystyle \sigma _{1},\sigma _{2}={\frac {\sigma _{x}+\sigma _{y}}{2}}\pm {\sqrt {\left({\frac {\sigma _{x}-\sigma _{y}}{2}}\right)^{2}+\tau _{xy}^{2}}}.}

Using just the part of the equation under thesquare root is equal to the maximum and minimum shear stress for plus and minus. This is shown as:

τmax,τmin=±(σxσy2)2+τxy2.{\displaystyle \tau _{\max },\tau _{\min }=\pm {\sqrt {\left({\frac {\sigma _{x}-\sigma _{y}}{2}}\right)^{2}+\tau _{xy}^{2}}}.}

Maximum and minimum shear stresses

[edit]

The maximum shear stress or maximum principal shear stress is equal to one-half the difference between the largest and smallest principal stresses, and acts on the plane that bisects the angle between the directions of the largest and smallest principal stresses, i.e. the plane of the maximum shear stress is oriented45{\displaystyle 45^{\circ }} from the principal stress planes. The maximum shear stress is expressed as

τmax=12|σmaxσmin|.{\displaystyle \tau _{\max }={\frac {1}{2}}\left|\sigma _{\max }-\sigma _{\min }\right|.}

Assumingσ1σ2σ3{\displaystyle \sigma _{1}\geq \sigma _{2}\geq \sigma _{3}} then

τmax=12|σ1σ3|{\displaystyle \tau _{\max }={\frac {1}{2}}\left|\sigma _{1}-\sigma _{3}\right|}

When the stress tensor is non-zero the normal stress component acting on the plane for the maximum shear stress is non-zero and it is equal to

σn=12(σ1+σ3).{\displaystyle \sigma _{\text{n}}={\frac {1}{2}}\left(\sigma _{1}+\sigma _{3}\right).}
Derivation of the maximum and minimum shear stresses[8]: p.45–78 [11]: p.1–46 [13][15]: p.111–157 [16]: p.9–41 [17]: p.33–66 [18]: p.43–61 
The normal stress can be written in terms of principal stresses(σ1σ2σ3){\displaystyle (\sigma _{1}\geq \sigma _{2}\geq \sigma _{3})} as
σn=σijninj=σ1n12+σ2n22+σ3n32{\displaystyle {\begin{aligned}\sigma _{\mathrm {n} }&=\sigma _{ij}n_{i}n_{j}\\&=\sigma _{1}n_{1}^{2}+\sigma _{2}n_{2}^{2}+\sigma _{3}n_{3}^{2}\\\end{aligned}}}

Knowing that(T(n))2=σijσiknjnk{\displaystyle \left(T^{(n)}\right)^{2}=\sigma _{ij}\sigma _{ik}n_{j}n_{k}}, the shear stress in terms of principal stresses components is expressed as

τn2=(T(n))2σn2=σ12n12+σ22n22+σ32n32(σ1n12+σ2n22+σ3n32)2=(σ12σ22)n12+(σ22σ32)n22+σ32[(σ1σ3)n12+(σ2σ3)n22+σ3]2=(σ1σ2)2n12n22+(σ2σ3)2n22n32+(σ1σ3)2n12n32{\displaystyle {\begin{aligned}\tau _{\text{n}}^{2}&=\left(T^{(n)}\right)^{2}-\sigma _{\text{n}}^{2}\\&=\sigma _{1}^{2}n_{1}^{2}+\sigma _{2}^{2}n_{2}^{2}+\sigma _{3}^{2}n_{3}^{2}-\left(\sigma _{1}n_{1}^{2}+\sigma _{2}n_{2}^{2}+\sigma _{3}n_{3}^{2}\right)^{2}\\&=\left(\sigma _{1}^{2}-\sigma _{2}^{2}\right)n_{1}^{2}+\left(\sigma _{2}^{2}-\sigma _{3}^{2}\right)n_{2}^{2}+\sigma _{3}^{2}-\left[\left(\sigma _{1}-\sigma _{3}\right)n_{1}^{2}+\left(\sigma _{2}-\sigma _{3}\right)n_{2}^{2}+\sigma _{3}\right]^{2}\\&=(\sigma _{1}-\sigma _{2})^{2}n_{1}^{2}n_{2}^{2}+(\sigma _{2}-\sigma _{3})^{2}n_{2}^{2}n_{3}^{2}+(\sigma _{1}-\sigma _{3})^{2}n_{1}^{2}n_{3}^{2}\\\end{aligned}}}

The maximum shear stress at a point in a continuum body is determined by maximizingτn2{\displaystyle \tau _{\mathrm {n} }^{2}} subject to the condition that

nini=n12+n22+n32=1.{\displaystyle n_{i}n_{i}=n_{1}^{2}+n_{2}^{2}+n_{3}^{2}=1.}

This is a constrained maximization problem, which can be solved using theLagrangian multiplier technique to convert the problem into an unconstrained optimization problem. Thus, the stationary values (maximum and minimum values)ofτn2{\displaystyle \tau _{\text{n}}^{2}} occur where the gradient ofτn2{\displaystyle \tau _{\text{n}}^{2}} is parallel to the gradient ofF{\displaystyle F}.

The Lagrangian function for this problem can be written as

F(n1,n2,n3,λ)=τ2+λ(g(n1,n2,n3)1)=σ12n12+σ22n22+σ32n32(σ1n12+σ2n22+σ3n32)2+λ(n12+n22+n321){\displaystyle {\begin{aligned}F\left(n_{1},n_{2},n_{3},\lambda \right)&=\tau ^{2}+\lambda \left(g\left(n_{1},n_{2},n_{3}\right)-1\right)\\&=\sigma _{1}^{2}n_{1}^{2}+\sigma _{2}^{2}n_{2}^{2}+\sigma _{3}^{2}n_{3}^{2}-\left(\sigma _{1}n_{1}^{2}+\sigma _{2}n_{2}^{2}+\sigma _{3}n_{3}^{2}\right)^{2}+\lambda \left(n_{1}^{2}+n_{2}^{2}+n_{3}^{2}-1\right)\\\end{aligned}}}

whereλ{\displaystyle \lambda } is the Lagrangian multiplier (which is different from theλ{\displaystyle \lambda } use to denote eigenvalues).

The extreme values of these functions are

Fn1=0Fn2=0Fn3=0{\displaystyle {\frac {\partial F}{\partial n_{1}}}=0\qquad {\frac {\partial F}{\partial n_{2}}}=0\qquad {\frac {\partial F}{\partial n_{3}}}=0}

thence

Fn1=n1σ122n1σ1(σ1n12+σ2n22+σ3n32)+λn1=0{\displaystyle {\frac {\partial F}{\partial n_{1}}}=n_{1}\sigma _{1}^{2}-2n_{1}\sigma _{1}\left(\sigma _{1}n_{1}^{2}+\sigma _{2}n_{2}^{2}+\sigma _{3}n_{3}^{2}\right)+\lambda n_{1}=0}
Fn2=n2σ222n2σ2(σ1n12+σ2n22+σ3n32)+λn2=0{\displaystyle {\frac {\partial F}{\partial n_{2}}}=n_{2}\sigma _{2}^{2}-2n_{2}\sigma _{2}\left(\sigma _{1}n_{1}^{2}+\sigma _{2}n_{2}^{2}+\sigma _{3}n_{3}^{2}\right)+\lambda n_{2}=0}
Fn3=n3σ322n3σ3(σ1n12+σ2n22+σ3n32)+λn3=0{\displaystyle {\frac {\partial F}{\partial n_{3}}}=n_{3}\sigma _{3}^{2}-2n_{3}\sigma _{3}\left(\sigma _{1}n_{1}^{2}+\sigma _{2}n_{2}^{2}+\sigma _{3}n_{3}^{2}\right)+\lambda n_{3}=0}

These three equations together with the conditionnini=1{\displaystyle n_{i}n_{i}=1} may be solved forλ{\displaystyle \lambda },n1{\displaystyle n_{1}},n2{\displaystyle n_{2}}, andn3{\displaystyle n_{3}}.

By multiplying the first three equations byn1{\displaystyle n_{1}},n2{\displaystyle n_{2}}, andn3{\displaystyle n_{3}}, respectively, and knowing thatσn=σijninj=σ1n12+σ2n22+σ3n32{\displaystyle \sigma _{\text{n}}=\sigma _{ij}n_{i}n_{j}=\sigma _{1}n_{1}^{2}+\sigma _{2}n_{2}^{2}+\sigma _{3}n_{3}^{2}} we obtain

n12σ122σ1n12σn+n12λ=0{\displaystyle n_{1}^{2}\sigma _{1}^{2}-2\sigma _{1}n_{1}^{2}\sigma _{\text{n}}+n_{1}^{2}\lambda =0}
n22σ222σ2n22σn+n22λ=0{\displaystyle n_{2}^{2}\sigma _{2}^{2}-2\sigma _{2}n_{2}^{2}\sigma _{\text{n}}+n_{2}^{2}\lambda =0}
n32σ322σ1n32σn+n32λ=0{\displaystyle n_{3}^{2}\sigma _{3}^{2}-2\sigma _{1}n_{3}^{2}\sigma _{\text{n}}+n_{3}^{2}\lambda =0}

Adding these three equations we get

[n12σ12+n22σ22+n32σ32]2(σ1n12+σ2n22+σ3n32)σn+λ(n12+n22+n32)=0[τn2+(σ1n12+σ2n22+σ3n32)2]2σn2+λ=0[τn2+σn2]2σn2+λ=0λ=σn2τn2{\displaystyle {\begin{aligned}\left[n_{1}^{2}\sigma _{1}^{2}+n_{2}^{2}\sigma _{2}^{2}+n_{3}^{2}\sigma _{3}^{2}\right]-2\left(\sigma _{1}n_{1}^{2}+\sigma _{2}n_{2}^{2}+\sigma _{3}n_{3}^{2}\right)\sigma _{\mathrm {n} }+\lambda \left(n_{1}^{2}+n_{2}^{2}+n_{3}^{2}\right)&=0\\\left[\tau _{\mathrm {n} }^{2}+\left(\sigma _{1}n_{1}^{2}+\sigma _{2}n_{2}^{2}+\sigma _{3}n_{3}^{2}\right)^{2}\right]-2\sigma _{\mathrm {n} }^{2}+\lambda &=0\\\left[\tau _{\mathrm {n} }^{2}+\sigma _{\mathrm {n} }^{2}\right]-2\sigma _{\mathrm {n} }^{2}+\lambda &=0\\\lambda &=\sigma _{\mathrm {n} }^{2}-\tau _{\mathrm {n} }^{2}\end{aligned}}}

This result can be substituted into each of the first three equations to obtain

Fn1=n1σ122n1σ1(σ1n12+σ2n22+σ3n32)+(σn2τn2)n1=0n1σ122n1σ1σn+(σn2τn2)n1=0(σ122σ1σn+σn2τn2)n1=0{\displaystyle {\begin{aligned}{\frac {\partial F}{\partial n_{1}}}=n_{1}\sigma _{1}^{2}-2n_{1}\sigma _{1}\left(\sigma _{1}n_{1}^{2}+\sigma _{2}n_{2}^{2}+\sigma _{3}n_{3}^{2}\right)+\left(\sigma _{\text{n}}^{2}-\tau _{\text{n}}^{2}\right)n_{1}&=0\\n_{1}\sigma _{1}^{2}-2n_{1}\sigma _{1}\sigma _{\text{n}}+\left(\sigma _{\text{n}}^{2}-\tau _{\text{n}}^{2}\right)n_{1}&=0\\\left(\sigma _{1}^{2}-2\sigma _{1}\sigma _{\text{n}}+\sigma _{\text{n}}^{2}-\tau _{\text{n}}^{2}\right)n_{1}&=0\\\end{aligned}}}

Doing the same for the other two equations we have

Fn2=(σ222σ2σn+σn2τn2)n2=0{\displaystyle {\frac {\partial F}{\partial n_{2}}}=\left(\sigma _{2}^{2}-2\sigma _{2}\sigma _{\text{n}}+\sigma _{\text{n}}^{2}-\tau _{\text{n}}^{2}\right)n_{2}=0}
Fn3=(σ322σ3σn+σn2τn2)n3=0{\displaystyle {\frac {\partial F}{\partial n_{3}}}=\left(\sigma _{3}^{2}-2\sigma _{3}\sigma _{\text{n}}+\sigma _{\text{n}}^{2}-\tau _{\text{n}}^{2}\right)n_{3}=0}

A first approach to solve these last three equations is to consider the trivial solutionni=0{\displaystyle n_{i}=0}. However, this option does not fulfill the constraintnini=1{\displaystyle n_{i}n_{i}=1}.

Considering the solution wheren1=n2=0{\displaystyle n_{1}=n_{2}=0} andn30{\displaystyle n_{3}\neq 0}, it is determine from the conditionnini=1{\displaystyle n_{i}n_{i}=1} thatn3=±1{\displaystyle n_{3}=\pm 1}, then from the original equation forτn2{\displaystyle \tau _{\text{n}}^{2}} it is seen thatτn=0{\displaystyle \tau _{\text{n}}=0}.The other two possible values forτn{\displaystyle \tau _{\text{n}}} can be obtained similarly by assuming

n1=n3=0{\displaystyle n_{1}=n_{3}=0} andn20{\displaystyle n_{2}\neq 0}
n2=n3=0{\displaystyle n_{2}=n_{3}=0} andn10{\displaystyle n_{1}\neq 0}

Thus, one set of solutions for these four equations is:

n1=0,n2=0,n3=±1,τn=0n1=0,n2=±1,n3=0,τn=0n1=±1,n2=0,n3=0,τn=0{\displaystyle {\begin{aligned}n_{1}&=0,&n_{2}&=0,&n_{3}&=\pm 1,&\tau _{\text{n}}&=0\\n_{1}&=0,&n_{2}&=\pm 1,&n_{3}&=0,&\tau _{\text{n}}&=0\\n_{1}&=\pm 1,&n_{2}&=0,&n_{3}&=0,&\tau _{\text{n}}&=0\end{aligned}}}

These correspond to minimum values forτn{\displaystyle \tau _{\mathrm {n} }} and verifies that there are no shear stresses on planes normal to the principal directions of stress, as shown previously.

A second set of solutions is obtained by assumingn1=0{\displaystyle n_{1}=0},n20{\displaystyle n_{2}\neq 0} andn30{\displaystyle n_{3}\neq 0}. Thus we have

Fn2=σ222σ2σn+σn2τn2=0{\displaystyle {\frac {\partial F}{\partial n_{2}}}=\sigma _{2}^{2}-2\sigma _{2}\sigma _{\text{n}}+\sigma _{\text{n}}^{2}-\tau _{\text{n}}^{2}=0}
Fn3=σ322σ3σn+σn2τn2=0{\displaystyle {\frac {\partial F}{\partial n_{3}}}=\sigma _{3}^{2}-2\sigma _{3}\sigma _{\text{n}}+\sigma _{\text{n}}^{2}-\tau _{\text{n}}^{2}=0}

To find the values forn2{\displaystyle n_{2}} andn3{\displaystyle n_{3}} we first add these two equations

σ22σ322σ2σn+2σ3σn=0σ22σ322σn(σ2σ3)=0σ2+σ3=2σn{\displaystyle {\begin{aligned}\sigma _{2}^{2}-\sigma _{3}^{2}-2\sigma _{2}\sigma _{\text{n}}+2\sigma _{3}\sigma _{\text{n}}&=0\\\sigma _{2}^{2}-\sigma _{3}^{2}-2\sigma _{\text{n}}\left(\sigma _{2}-\sigma _{3}\right)&=0\\\sigma _{2}+\sigma _{3}&=2\sigma _{\text{n}}\end{aligned}}}

Knowing that forn1=0{\displaystyle n_{1}=0}

σn=σ1n12+σ2n22+σ3n32=σ2n22+σ3n32{\displaystyle \sigma _{\text{n}}=\sigma _{1}n_{1}^{2}+\sigma _{2}n_{2}^{2}+\sigma _{3}n_{3}^{2}=\sigma _{2}n_{2}^{2}+\sigma _{3}n_{3}^{2}}

and

n12+n22+n32=n22+n32=1{\displaystyle n_{1}^{2}+n_{2}^{2}+n_{3}^{2}=n_{2}^{2}+n_{3}^{2}=1}

we have

σ2+σ3=2σnσ2+σ3=2(σ2n22+σ3n32)σ2+σ3=2(σ2n22+σ3(1n22))=0{\displaystyle {\begin{aligned}\sigma _{2}+\sigma _{3}&=2\sigma _{\text{n}}\\\sigma _{2}+\sigma _{3}&=2\left(\sigma _{2}n_{2}^{2}+\sigma _{3}n_{3}^{2}\right)\\\sigma _{2}+\sigma _{3}&=2\left(\sigma _{2}n_{2}^{2}+\sigma _{3}\left(1-n_{2}^{2}\right)\right)=0\end{aligned}}}

and solving forn2{\displaystyle n_{2}} we have

n2=±12{\displaystyle n_{2}=\pm {\frac {1}{\sqrt {2}}}}

Then solving forn3{\displaystyle n_{3}} we have

n3=1n22=±12{\displaystyle n_{3}={\sqrt {1-n_{2}^{2}}}=\pm {\frac {1}{\sqrt {2}}}}

and

τn2=(σ2σ3)2n22n32τn=σ2σ32{\displaystyle {\begin{aligned}\tau _{\text{n}}^{2}&=(\sigma _{2}-\sigma _{3})^{2}n_{2}^{2}n_{3}^{2}\\\tau _{\text{n}}&={\frac {\sigma _{2}-\sigma _{3}}{2}}\end{aligned}}}

The other two possible values forτn{\displaystyle \tau _{\text{n}}} can be obtained similarly by assuming

n2=0{\displaystyle n_{2}=0},n10{\displaystyle n_{1}\neq 0} andn30{\displaystyle n_{3}\neq 0}
n3=0{\displaystyle n_{3}=0},n10{\displaystyle n_{1}\neq 0} andn20{\displaystyle n_{2}\neq 0}

Therefore, the second set of solutions forFn1=0{\displaystyle \textstyle {\frac {\partial F}{\partial n_{1}}}=0}, representing a maximum forτn{\displaystyle \tau _{\text{n}}} is

n1=0,n2=±12,n3=±12,τn=±σ2σ32{\displaystyle n_{1}=0,\,\,n_{2}=\pm {\frac {1}{\sqrt {2}}},\,\,n_{3}=\pm {\frac {1}{\sqrt {2}}},\,\,\tau _{\text{n}}=\pm {\frac {\sigma _{2}-\sigma _{3}}{2}}}
n1=±12,n2=0,n3=±12,τn=±σ1σ32{\displaystyle n_{1}=\pm {\frac {1}{\sqrt {2}}},\,\,n_{2}=0,\,\,n_{3}=\pm {\frac {1}{\sqrt {2}}},\,\,\tau _{\text{n}}=\pm {\frac {\sigma _{1}-\sigma _{3}}{2}}}
n1=±12,n2=±12,n3=0,τn=±σ1σ22{\displaystyle n_{1}=\pm {\frac {1}{\sqrt {2}}},\,\,n_{2}=\pm {\frac {1}{\sqrt {2}}},\,\,n_{3}=0,\,\,\tau _{\text{n}}=\pm {\frac {\sigma _{1}-\sigma _{2}}{2}}}

Therefore, assumingσ1σ2σ3{\displaystyle \sigma _{1}\geq \sigma _{2}\geq \sigma _{3}}, the maximum shear stress is expressed by

τmax=12|σ1σ3|=12|σmaxσmin|{\displaystyle \tau _{\max }={\frac {1}{2}}\left|\sigma _{1}-\sigma _{3}\right|={\frac {1}{2}}\left|\sigma _{\max }-\sigma _{\min }\right|}

and it can be stated as being equal to one-half the difference between the largest and smallest principal stresses, acting on the plane that bisects the angle between the directions of the largest and smallest principal stresses.

Stress deviator tensor

[edit]

The stress tensorσij{\displaystyle \sigma _{ij}} can be expressed as the sum of two other stress tensors:

  1. ameanhydrostatic stress tensor orvolumetric stress tensor ormean normal stress tensor,πδij{\displaystyle \pi \delta _{ij}}, which tends to change the volume of the stressed body; and
  2. a deviatoric component called thestress deviator tensor,sij{\displaystyle s_{ij}}, which tends to distort it.

So

σij=sij+πδij,{\displaystyle \sigma _{ij}=s_{ij}+\pi \delta _{ij},}

whereπ{\displaystyle \pi } is the mean stress given by

π=σkk3=σ11+σ22+σ333=13I1.{\displaystyle \pi ={\frac {\sigma _{kk}}{3}}={\frac {\sigma _{11}+\sigma _{22}+\sigma _{33}}{3}}={\frac {1}{3}}I_{1}.}

Pressure (p{\displaystyle p}) is generally defined as negative one-third thetrace of the stress tensor minus any stress the divergence of the velocity contributes with, i.e.

p=ζuπ=ζukxkπ=kζukxkπ,{\displaystyle p=\zeta \,\nabla \cdot {\vec {u}}-\pi =\zeta \,{\frac {\partial u_{k}}{\partial x_{k}}}-\pi =\sum _{k}\zeta \,{\frac {\partial u_{k}}{\partial x_{k}}}-\pi ,}

whereζ{\displaystyle \zeta } is a proportionality constant (viz. theVolume viscosity),{\displaystyle \nabla \cdot } is thedivergence operator,xk{\displaystyle x_{k}} is thekthCartesian coordinate,u{\displaystyle {\vec {u}}} is theflow velocity anduk{\displaystyle u_{k}} is thekth Cartesian component ofu{\displaystyle {\vec {u}}}.

The deviatoric stress tensor can be obtained by subtracting the hydrostatic stress tensor from the Cauchy stress tensor:

sij=σijσkk3δij,[s11s12s13s21s22s23s31s32s33]=[σ11σ12σ13σ21σ22σ23σ31σ32σ33][π000π000π]=[σ11πσ12σ13σ21σ22πσ23σ31σ32σ33π].{\displaystyle {\begin{aligned}s_{ij}&=\sigma _{ij}-{\frac {\sigma _{kk}}{3}}\delta _{ij},\,\\\left[{\begin{matrix}s_{11}&s_{12}&s_{13}\\s_{21}&s_{22}&s_{23}\\s_{31}&s_{32}&s_{33}\end{matrix}}\right]&=\left[{\begin{matrix}\sigma _{11}&\sigma _{12}&\sigma _{13}\\\sigma _{21}&\sigma _{22}&\sigma _{23}\\\sigma _{31}&\sigma _{32}&\sigma _{33}\end{matrix}}\right]-\left[{\begin{matrix}\pi &0&0\\0&\pi &0\\0&0&\pi \end{matrix}}\right]\\&=\left[{\begin{matrix}\sigma _{11}-\pi &\sigma _{12}&\sigma _{13}\\\sigma _{21}&\sigma _{22}-\pi &\sigma _{23}\\\sigma _{31}&\sigma _{32}&\sigma _{33}-\pi \end{matrix}}\right].\end{aligned}}}

Invariants of the stress deviator tensor

[edit]

As it is a second order tensor, the stress deviator tensor also has a set ofinvariants, which can be obtained using the same procedure used to calculate the invariants of the stress tensor. It can be shown that the principal directions of the stress deviator tensorsij{\displaystyle s_{ij}} are the same as the principal directions of the stress tensorσij{\displaystyle \sigma _{ij}}. Thus, the characteristic equation is

|sijλδij|=λ3J1λ2J2λJ3=0,{\displaystyle \left|s_{ij}-\lambda \delta _{ij}\right|=\lambda ^{3}-J_{1}\lambda ^{2}-J_{2}\lambda -J_{3}=0,}

whereJ1{\displaystyle J_{1}},J2{\displaystyle J_{2}} andJ3{\displaystyle J_{3}} are the first, second, and thirddeviatoric stress invariants, respectively. Their values are the same (invariant) regardless of the orientation of the coordinate system chosen. These deviatoric stress invariants can be expressed as a function of the components ofsij{\displaystyle s_{ij}} or its principal valuess1{\displaystyle s_{1}},s2{\displaystyle s_{2}}, ands3{\displaystyle s_{3}}, or alternatively, as a function ofσij{\displaystyle \sigma _{ij}} or its principal valuesσ1{\displaystyle \sigma _{1}},σ2{\displaystyle \sigma _{2}}, andσ3{\displaystyle \sigma _{3}}. Thus,

J1=skk=0,J2=12sijsji=12tr(s2)=12(s12+s22+s32)=16[(σ11σ22)2+(σ22σ33)2+(σ33σ11)2]+σ122+σ232+σ312=16[(σ1σ2)2+(σ2σ3)2+(σ3σ1)2]=13I12I2=12[tr(σ2)13tr(σ)2],J3=det(sij)=13sijsjkski=13tr(s3)=13(s13+s23+s33)=s1s2s3=227I1313I1I2+I3=13[tr(σ3)tr(σ2)tr(σ)+29tr(σ)3].{\displaystyle {\begin{aligned}J_{1}&=s_{kk}=0,\\[3pt]J_{2}&={\frac {1}{2}}s_{ij}s_{ji}={\frac {1}{2}}\operatorname {tr} \left({\boldsymbol {s}}^{2}\right)\\&={\frac {1}{2}}\left(s_{1}^{2}+s_{2}^{2}+s_{3}^{2}\right)\\&={\frac {1}{6}}\left[(\sigma _{11}-\sigma _{22})^{2}+(\sigma _{22}-\sigma _{33})^{2}+(\sigma _{33}-\sigma _{11})^{2}\right]+\sigma _{12}^{2}+\sigma _{23}^{2}+\sigma _{31}^{2}\\&={\frac {1}{6}}\left[(\sigma _{1}-\sigma _{2})^{2}+(\sigma _{2}-\sigma _{3})^{2}+(\sigma _{3}-\sigma _{1})^{2}\right]\\&={\frac {1}{3}}I_{1}^{2}-I_{2}={\frac {1}{2}}\left[\operatorname {tr} \left({\boldsymbol {\sigma }}^{2}\right)-{\frac {1}{3}}\operatorname {tr} ({\boldsymbol {\sigma }})^{2}\right],\\[3pt]J_{3}&=\det(s_{ij})\\&={\frac {1}{3}}s_{ij}s_{jk}s_{ki}={\frac {1}{3}}{\text{tr}}\left({\boldsymbol {s}}^{3}\right)\\&={\frac {1}{3}}\left(s_{1}^{3}+s_{2}^{3}+s_{3}^{3}\right)\\&=s_{1}s_{2}s_{3}\\&={\frac {2}{27}}I_{1}^{3}-{\frac {1}{3}}I_{1}I_{2}+I_{3}={\frac {1}{3}}\left[{\text{tr}}({\boldsymbol {\sigma }}^{3})-\operatorname {tr} \left({\boldsymbol {\sigma }}^{2}\right)\operatorname {tr} ({\boldsymbol {\sigma }})+{\frac {2}{9}}\operatorname {tr} ({\boldsymbol {\sigma }})^{3}\right].\,\end{aligned}}}

Becauseskk=0{\displaystyle s_{kk}=0}, the stress deviator tensor is in a state of pure shear.

A quantity called the equivalent stress orvon Mises stress is commonly used in solid mechanics. The equivalent stress is defined as

σvM=3J2=12 [(σ1σ2)2+(σ2σ3)2+(σ3σ1)2].{\displaystyle \sigma _{\text{vM}}={\sqrt {3\,J_{2}}}={\sqrt {{\frac {1}{2}}~\left[(\sigma _{1}-\sigma _{2})^{2}+(\sigma _{2}-\sigma _{3})^{2}+(\sigma _{3}-\sigma _{1})^{2}\right]}}\,.}

Octahedral stresses

[edit]
Figure 6. Octahedral stress planes

Considering the principal directions as the coordinate axes, a plane whose normal vector makes equal angles with each of the principal axes (i.e. having direction cosines equal to|1/3|{\displaystyle \vert 1/{\sqrt {3}}\vert }) is called anoctahedral plane. There are a total of eight octahedral planes (Figure 6). The normal and shear components of the stress tensor on these planes are calledoctahedral normal stressσoct{\displaystyle \sigma _{\text{oct}}} andoctahedral shear stressτoct{\displaystyle \tau _{\text{oct}}}, respectively. Octahedral plane passing through the origin is known as theπ-plane (π not to be confused withmean stress denoted byπ in above section). On theπ-plane,sij=13I{\displaystyle \textstyle s_{ij}={\frac {1}{3}}I}.

Knowing that the stress tensor of point O (Figure 6) in the principal axes is

σij=[σ1000σ2000σ3]{\displaystyle \sigma _{ij}={\begin{bmatrix}\sigma _{1}&0&0\\0&\sigma _{2}&0\\0&0&\sigma _{3}\end{bmatrix}}}

the stress vector on an octahedral plane is then given by:

Toct(n)=σijniej=σ1n1e1+σ2n2e2+σ3n3e3=13(σ1e1+σ2e2+σ3e3){\displaystyle {\begin{aligned}\mathbf {T} _{\text{oct}}^{(\mathbf {n} )}&=\sigma _{ij}n_{i}\mathbf {e} _{j}\\&=\sigma _{1}n_{1}\mathbf {e} _{1}+\sigma _{2}n_{2}\mathbf {e} _{2}+\sigma _{3}n_{3}\mathbf {e} _{3}\\&={\frac {1}{\sqrt {3}}}(\sigma _{1}\mathbf {e} _{1}+\sigma _{2}\mathbf {e} _{2}+\sigma _{3}\mathbf {e} _{3})\end{aligned}}}

The normal component of the stress vector at point O associated with the octahedral plane is

σoct=Ti(n)ni=σijninj=σ1n1n1+σ2n2n2+σ3n3n3=13(σ1+σ2+σ3)=13I1{\displaystyle {\begin{aligned}\sigma _{\text{oct}}&=T_{i}^{(n)}n_{i}\\&=\sigma _{ij}n_{i}n_{j}\\&=\sigma _{1}n_{1}n_{1}+\sigma _{2}n_{2}n_{2}+\sigma _{3}n_{3}n_{3}\\&={\frac {1}{3}}(\sigma _{1}+\sigma _{2}+\sigma _{3})={\frac {1}{3}}I_{1}\end{aligned}}}

which is the mean normal stress or hydrostatic stress. This value is the same in all eight octahedral planes.The shear stress on the octahedral plane is then

τoct=Ti(n)Ti(n)σoct2=[13(σ12+σ22+σ32)19(σ1+σ2+σ3)2]12=13[(σ1σ2)2+(σ2σ3)2+(σ3σ1)2]12=132I126I2=23J2{\displaystyle {\begin{aligned}\tau _{\text{oct}}&={\sqrt {T_{i}^{(n)}T_{i}^{(n)}-\sigma _{\text{oct}}^{2}}}\\&=\left[{\frac {1}{3}}\left(\sigma _{1}^{2}+\sigma _{2}^{2}+\sigma _{3}^{2}\right)-{\frac {1}{9}}(\sigma _{1}+\sigma _{2}+\sigma _{3})^{2}\right]^{\frac {1}{2}}\\&={\frac {1}{3}}\left[(\sigma _{1}-\sigma _{2})^{2}+(\sigma _{2}-\sigma _{3})^{2}+(\sigma _{3}-\sigma _{1})^{2}\right]^{\frac {1}{2}}={\frac {1}{3}}{\sqrt {2I_{1}^{2}-6I_{2}}}={\sqrt {{\frac {2}{3}}J_{2}}}\end{aligned}}}

See also

[edit]

Notes

[edit]
  1. ^In detail:
    [T1(e)T2(e)T3(e)]=[e1e2e3][σ11σ12σ13σ21σ22σ23σ31σ32σ33].{\displaystyle \left[{\begin{matrix}T_{1}^{(\mathbf {e} )}&T_{2}^{(\mathbf {e} )}&T_{3}^{(\mathbf {e} )}\end{matrix}}\right]=\left[{\begin{matrix}e_{1}&e_{2}&e_{3}\end{matrix}}\right]\cdot \left[{\begin{matrix}\sigma _{11}&\sigma _{12}&\sigma _{13}\\\sigma _{21}&\sigma _{22}&\sigma _{23}\\\sigma _{31}&\sigma _{32}&\sigma _{33}\\\end{matrix}}\right].}

References

[edit]
  1. ^abcIrgens, Fridtjov (2008),Continuum Mechanics, Springer,ISBN 978-3-540-74297-5
  2. ^Truesdell, C.;Toupin, R.A. (1960), "The Classical Field Theories", inFlügge, Siegfried (ed.),Principles of Classical Mechanics and Field Theory/Prinzipien der Klassischen Mechanik und Feldtheorie, Handbuch der Physik (Encyclopedia of Physics), vol. III/1, Berlin–Heidelberg–New York:Springer-Verlag, pp. 226–793,Bibcode:1960HDP.....2.....F,doi:10.1007/978-3-642-45943-6,ISBN 978-3-540-02547-4,MR 0118005,Zbl 0118.39702{{citation}}:ISBN / Date incompatibility (help).
  3. ^Chadwick, Peter (1999),Continuum Mechanics: Concise Theory and Problems, Books on Physics, Dover Publications,ISBN 0-486-40180-4
  4. ^abFung, Yuan-cheng; Tong, Pin (2001),Classical and Computational Solid Mechanics, World Scientific,ISBN 981-02-4124-0
  5. ^abSmith & Truesdell p. 97
  6. ^abMase, G. Thomas; Mase, George E. (1999),Continuum Mechanics for Engineers (2nd ed.), CRC Press,ISBN 0-8493-1855-6
  7. ^abcLiu, I-Shih (2002),Continuum Mechanics, Springer,ISBN 3-540-43019-9
  8. ^abWu, Han-Chin (2005),Continuum Mechanics and Plasticity, CRC Press,ISBN 1-58488-363-4
  9. ^Lubliner
  10. ^Basar
  11. ^abcAtanackovic, Teodor M.; Guran, Ardéshir (2000),Theory of Elasticity for Scientists and Engineers, Springer,ISBN 0-8176-4072-X
  12. ^Hjelmstad, Keith D. (2005),Fundamentals of Structural Mechanics (2nd ed.), Prentice-Hall,ISBN 0-387-23330-X
  13. ^abChen, Wai-Fah; Han, Da-Jian (2007),Plasticity for Structural Engineers, J. Ross Publishing,ISBN 978-1-932159-75-2
  14. ^Hamrock, Bernard (2005),Fundamentals of Machine Elements, McGraw–Hill,ISBN 0-07-297682-9
  15. ^Chatterjee, Rabindranath (1999),Mathematical Theory of Continuum Mechanics, Alpha Science,ISBN 81-7319-244-8
  16. ^Jaeger, John Conrad; Cook, N. G. W.; Zimmerman, R. W. (2007),Fundamentals of Rock Mechanics (4th ed.), Wiley-Blackwell,ISBN 978-0-632-05759-7
  17. ^Ameen, Mohammed (2005).Computational Elasticity: Theory of Elasticity and Finite and Boundary Element Methods. Alpha Science.ISBN 1-84265-201-X.
  18. ^Prager, William (2004),Introduction to Mechanics of Continua, Dover Publications,ISBN 0-486-43809-0
Scope
Mathematics
Notation
Tensor
definitions
Operations
Related
abstractions
Notable tensors
Mathematics
Physics
Mathematicians
Authority control databasesEdit this at Wikidata
Retrieved from "https://en.wikipedia.org/w/index.php?title=Cauchy_stress_tensor&oldid=1310068970#Principal_stresses_and_stress_invariants"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp