Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Primitive element theorem

From Wikipedia, the free encyclopedia
Field theory theorem

Infield theory, theprimitive element theorem states that everyfiniteseparablefield extension issimple, i.e. generated by a single element. This theorem implies in particular that allalgebraic number fields over the rational numbers, and all extensions in which both fields are finite, are simple.

Terminology

[edit]

LetE/F{\displaystyle E/F} be afield extension. An elementαE{\displaystyle \alpha \in E} is aprimitive element forE/F{\displaystyle E/F} ifE=F(α),{\displaystyle E=F(\alpha ),} i.e. if every element ofE{\displaystyle E} can be written as arational function inα{\displaystyle \alpha } with coefficients inF{\displaystyle F}. If there exists such a primitive element, thenE/F{\displaystyle E/F} is referred to as asimple extension.

If the field extensionE/F{\displaystyle E/F} has primitive elementα{\displaystyle \alpha } and is of finitedegreen=[E:F]{\displaystyle n=[E:F]}, then every elementγE{\displaystyle \gamma \in E} can be written in the form

γ=a0+a1α++an1αn1,{\displaystyle \gamma =a_{0}+a_{1}{\alpha }+\cdots +a_{n-1}{\alpha }^{n-1},}

for unique coefficientsa0,a1,,an1F{\displaystyle a_{0},a_{1},\ldots ,a_{n-1}\in F}. That is, the set

{1,α,,αn1}{\displaystyle \{1,\alpha ,\ldots ,{\alpha }^{n-1}\}}

is abasis forE as avector space overF. The degreen is equal to the degree of theirreducible polynomial ofα overF, the unique monicf(X)F[X]{\displaystyle f(X)\in F[X]} of minimal degree withα as a root (a linear dependency of{1,α,,αn1,αn}{\displaystyle \{1,\alpha ,\ldots ,\alpha ^{n-1},\alpha ^{n}\}}).

IfL is asplitting field off(X){\displaystyle f(X)} containing itsn distinct rootsα1,,αn{\displaystyle \alpha _{1},\ldots ,\alpha _{n}}, then there arenfield embeddingsσi:F(α)L{\displaystyle \sigma _{i}:F(\alpha )\hookrightarrow L} defined byσi(α)=αi{\displaystyle \sigma _{i}(\alpha )=\alpha _{i}} andσ(a)=a{\displaystyle \sigma (a)=a} foraF{\displaystyle a\in F}, and these extend to automorphisms ofL in theGalois group,σ1,,σnGal(L/F){\displaystyle \sigma _{1},\ldots ,\sigma _{n}\in \mathrm {Gal} (L/F)}. Indeed, for an extension field with[E:F]=n{\displaystyle [E:F]=n}, an elementα{\displaystyle \alpha } is a primitive element if and only ifα{\displaystyle \alpha } hasn distinct conjugatesσ1(α),,σn(α){\displaystyle \sigma _{1}(\alpha ),\ldots ,\sigma _{n}(\alpha )} in some splitting fieldLE{\displaystyle L\supseteq E}.

Example

[edit]

If one adjoins to therational numbersF=Q{\displaystyle F=\mathbb {Q} } the two irrational numbers2{\displaystyle {\sqrt {2}}} and3{\displaystyle {\sqrt {3}}} to get the extension fieldE=Q(2,3){\displaystyle E=\mathbb {Q} ({\sqrt {2}},{\sqrt {3}})} of degree 4, one can show this extension is simple, meaningE=Q(α){\displaystyle E=\mathbb {Q} (\alpha )} for a singleαE{\displaystyle \alpha \in E}. Takingα=2+3{\displaystyle \alpha ={\sqrt {2}}+{\sqrt {3}}}, the powers 1,α,α2,α3 can be expanded aslinear combinations of 1,2{\displaystyle {\sqrt {2}}},3{\displaystyle {\sqrt {3}}},6{\displaystyle {\sqrt {6}}} withinteger coefficients. One can solve thissystem of linear equations for2{\displaystyle {\sqrt {2}}} and3{\displaystyle {\sqrt {3}}} overQ(α){\displaystyle \mathbb {Q} (\alpha )}, to obtain2=12(α39α){\displaystyle {\sqrt {2}}={\tfrac {1}{2}}(\alpha ^{3}-9\alpha )} and3=12(α311α){\displaystyle {\sqrt {3}}=-{\tfrac {1}{2}}(\alpha ^{3}-11\alpha )}. This shows thatα is indeed a primitive element:

Q(2,3)=Q(2+3).{\displaystyle \mathbb {Q} ({\sqrt {2}},{\sqrt {3}})=\mathbb {Q} ({\sqrt {2}}+{\sqrt {3}}).}

One may also use the following more general argument.[1] The fieldE=Q(2,3){\displaystyle E=\mathbb {Q} ({\sqrt {2}},{\sqrt {3}})} clearly has four field automorphismsσ1,σ2,σ3,σ4:EE{\displaystyle \sigma _{1},\sigma _{2},\sigma _{3},\sigma _{4}:E\to E} defined byσi(2)=±2{\displaystyle \sigma _{i}({\sqrt {2}})=\pm {\sqrt {2}}} andσi(3)=±3{\displaystyle \sigma _{i}({\sqrt {3}})=\pm {\sqrt {3}}} for each choice of signs. The minimal polynomialf(X)Q[X]{\displaystyle f(X)\in \mathbb {Q} [X]} ofα=2+3{\displaystyle \alpha ={\sqrt {2}}+{\sqrt {3}}} must havef(σi(α))=σi(f(α))=0{\displaystyle f(\sigma _{i}(\alpha ))=\sigma _{i}(f(\alpha ))=0}, sof(X){\displaystyle f(X)} must have at least four distinct rootsσi(α)=±2±3{\displaystyle \sigma _{i}(\alpha )=\pm {\sqrt {2}}\pm {\sqrt {3}}}. Thusf(X){\displaystyle f(X)} has degree at least four, and[Q(α):Q]4{\displaystyle [\mathbb {Q} (\alpha ):\mathbb {Q} ]\geq 4}, but this is the degree of the entire field,[E:Q]=4{\displaystyle [E:\mathbb {Q} ]=4}, soE=Q(α){\displaystyle E=\mathbb {Q} (\alpha )}.

Theorem statement

[edit]

The primitive element theorem states:

Everyseparable field extension of finite degree is simple.

This theorem applies toalgebraic number fields, i.e. finite extensions of the rational numbersQ, sinceQ hascharacteristic 0 and therefore every finite extension overQ is separable.

Using thefundamental theorem of Galois theory, the former theorem immediately follows fromSteinitz's theorem.

Characteristicp

[edit]

For a non-separable extensionE/F{\displaystyle E/F} ofcharacteristic p, there is nevertheless a primitive element provided the degree [E : F] isp: indeed, there can be no non-trivial intermediate subfields since their degrees would be factors of the primep.

When [E : F] =p2, there may not be a primitive element (in which case there are infinitely many intermediate fields bySteinitz's theorem). The simplest example isE=Fp(T,U){\displaystyle E=\mathbb {F} _{p}(T,U)}, the field of rational functions in two indeterminatesT andU over thefinite field withp elements, andF=Fp(Tp,Up){\displaystyle F=\mathbb {F} _{p}(T^{p},U^{p})}. In fact, for anyα=g(T,U){\displaystyle \alpha =g(T,U)} inEF{\displaystyle E\setminus F}, theFrobenius endomorphism shows that the elementαp{\displaystyle \alpha ^{p}} lies inF , soα is a root off(X)=XpαpF[X]{\displaystyle f(X)=X^{p}-\alpha ^{p}\in F[X]}, andα cannot be a primitive element (of degreep2 overF), but insteadF(α) is a non-trivial intermediate field.

Proof

[edit]

Suppose first thatF{\displaystyle F} is infinite. By induction, it suffices to prove that any finite extensionE=F(β,γ){\displaystyle E=F(\beta ,\gamma )} is simple. ForcF{\displaystyle c\in F}, supposeα=β+cγ{\displaystyle \alpha =\beta +c\gamma } fails to be a primitive element,F(α)F(β,γ){\displaystyle F(\alpha )\subsetneq F(\beta ,\gamma )}. ThenγF(α){\displaystyle \gamma \notin F(\alpha )}, since otherwiseβ=αcγF(α)=F(β,γ){\displaystyle \beta =\alpha -c\gamma \in F(\alpha )=F(\beta ,\gamma )}. Consider the minimal polynomials ofβ,γ{\displaystyle \beta ,\gamma } overF(α){\displaystyle F(\alpha )}, respectivelyf(X),g(X)F(α)[X]{\displaystyle f(X),g(X)\in F(\alpha )[X]}, and take a splitting fieldL{\displaystyle L} containing all rootsβ,β,{\displaystyle \beta ,\beta ',\ldots } off(X){\displaystyle f(X)} andγ,γ,{\displaystyle \gamma ,\gamma ',\ldots } ofg(X){\displaystyle g(X)}. SinceγF(α){\displaystyle \gamma \notin F(\alpha )}, there is another rootγγ{\displaystyle \gamma '\neq \gamma }, and a field automorphismσ:LL{\displaystyle \sigma :L\to L} which fixesF(α){\displaystyle F(\alpha )} and takesσ(γ)=γ{\displaystyle \sigma (\gamma )=\gamma '}. We then haveσ(α)=α{\displaystyle \sigma (\alpha )=\alpha }, and:

β+cγ=σ(β+cγ)=σ(β)+cσ(γ){\displaystyle \beta +c\gamma =\sigma (\beta +c\gamma )=\sigma (\beta )+c\,\sigma (\gamma )}, and thereforec=σ(β)βγσ(γ){\displaystyle c={\frac {\sigma (\beta )-\beta }{\gamma -\sigma (\gamma )}}}.

Since there are only finitely many possibilities forσ(β)=β{\displaystyle \sigma (\beta )=\beta '} andσ(γ)=γ{\displaystyle \sigma (\gamma )=\gamma '}, only finitely manycF{\displaystyle c\in F} fail to give a primitive elementα=β+cγ{\displaystyle \alpha =\beta +c\gamma }. All other values giveF(α)=F(β,γ){\displaystyle F(\alpha )=F(\beta ,\gamma )}.

For the case whereF{\displaystyle F} is finite, we simply takeα{\displaystyle \alpha } to be aprimitive root of the finite extension fieldE{\displaystyle E}.

History

[edit]

In his First Memoir of 1831, published in 1846,[2]Évariste Galois sketched a proof of the classical primitive element theorem in the case of asplitting field of a polynomial over the rational numbers. The gaps in his sketch could easily be filled[3] (as remarked by the refereePoisson) by exploiting a theorem[4][5] ofLagrange from 1771, which Galois certainly knew. It is likely that Lagrange had already been aware of the primitive element theorem for splitting fields.[5] Galois then used this theorem heavily in his development of theGalois group. Since then it has been used in the development ofGalois theory and thefundamental theorem of Galois theory.

The primitive element theorem was proved in its modern form byErnst Steinitz, in an influential article onfield theory in 1910, which also containsSteinitz's theorem;[6] Steinitz called the "classical" resultTheorem of the primitive elements and his modern versionTheorem of the intermediate fields.

Emil Artin reformulated Galois theory in the 1930s without relying on primitive elements.[7][8]

References

[edit]
  1. ^Lang, Serge (2002).Algebra. Graduate Texts in Mathematics. Vol. 211. New York, NY: Springer New York. p. 243.doi:10.1007/978-1-4613-0041-0.ISBN 978-1-4612-6551-1.
  2. ^Neumann, Peter M. (2011).The mathematical writings of Évariste Galois. Zürich: European Mathematical Society.ISBN 978-3-03719-104-0.OCLC 757486602.
  3. ^Tignol, Jean-Pierre (February 2016).Galois' Theory of Algebraic Equations (2 ed.). WORLD SCIENTIFIC. p. 231.doi:10.1142/9719.ISBN 978-981-4704-69-4.OCLC 1020698655.
  4. ^Tignol, Jean-Pierre (February 2016).Galois' Theory of Algebraic Equations (2 ed.). WORLD SCIENTIFIC. p. 135.doi:10.1142/9719.ISBN 978-981-4704-69-4.OCLC 1020698655.
  5. ^abCox, David A. (2012).Galois theory (2nd ed.). Hoboken, NJ: John Wiley & Sons. p. 322.ISBN 978-1-118-21845-7.OCLC 784952441.
  6. ^Steinitz, Ernst (1910)."Algebraische Theorie der Körper".Journal für die reine und angewandte Mathematik (in German).1910 (137):167–309.doi:10.1515/crll.1910.137.167.ISSN 1435-5345.S2CID 120807300.
  7. ^Kleiner, Israel (2007)."§4.1 Galois theory".A History of Abstract Algebra. Springer. p. 64.ISBN 978-0-8176-4685-1.
  8. ^Artin, Emil (1998).Galois theory. Arthur N. Milgram (Republication of the 1944 revised edition of the 1942 first publication by The University Notre Dame Press ed.). Mineola, N.Y.: Dover Publications.ISBN 0-486-62342-4.OCLC 38144376.

External links

[edit]
Retrieved from "https://en.wikipedia.org/w/index.php?title=Primitive_element_theorem&oldid=1285913512"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp