This article is about the usage ofpremise in discourse and logic. For other uses, seePremise (disambiguation).
Apremise orpremiss[a] is aproposition—a true or false declarative statement—used in anargument to prove the truth of another proposition called theconclusion.[1] Arguments consist of aset of premises and a conclusion.
An argument is meaningful for its conclusion only when all of its premises aretrue. If one or more premises are false, the argument says nothing about whether the conclusion is true or false. For instance, a false premise on its own does not justify rejecting an argument's conclusion; to assume otherwise is alogical fallacy calleddenying the antecedent. One way to prove that a proposition is false is to formulate asound argument with a conclusion thatnegates that proposition.
An argument issound and its conclusion logically follows (it is true)if and only if the argument isvalidand its premises are true.
An argument isvalid if and only if it is the case that whenever the premises are all true, the conclusion must also be true. If thereexists alogical interpretation where the premises are all true but the conclusion is false, the argument is invalid.
Key to evaluating the quality of an argument is determining if it is valid and sound. That is, whether its premises are true and whether their truthnecessarily results in a true conclusion.
Inlogic, anargument requires aset of declarativesentences (or"propositions") known as the "premises" (or "premisses"), along with anotherdeclarative sentence (or "proposition"), known as theconclusion. Complex arguments can use a sequence of rules to connect several premises to one conclusion, or to derive a number of conclusions from the original premises which then act as premises for additional conclusions. An example of this is the use of therules of inference found withinsymbolic logic.
Aristotle held that any logical argument could be reduced to two premises and a conclusion.[2] Premises are sometimes left unstated, in which case, they are called missing premises, for example:
Socrates is mortal because all men are mortal.
It is evident that a tacitly understood claim is that Socrates is a man. The fully expressed reasoning is thus:
Because all men are mortal and Socrates is a man,Socrates is mortal.
In this example, the dependentclauses preceding the comma (namely, "all men are mortal" and "Socrates is a man") are the premises, while "Socrates is mortal" is the conclusion.
The proof of a conclusion depends on both thetruth of the premises and thevalidity of the argument. Also, additional information is required over and above the meaning of the premise to determine if the full meaning of the conclusion coincides with what is.[3]
ForEuclid, premises constitute two of the three propositions in asyllogism, with the other being the conclusion.[4] These categorical propositions contain three terms: subject and predicate of the conclusion, and the middle term. The subject of the conclusion is called the minor term, while the predicate is the major term. The premise that contains the middle term and major term is called the major premise while the premise that contains the middle term and minor term is called the minor premise.[5]
A premise can also be an indicator word if statements have been combined into a logical argument and such word functions to mark the role of one or more of the statements.[6] It indicates that the statement it is attached to is a premise.[6]
^In general usage, the spelling "premise" is most common; however, in the field of logic, the spelling "premiss" is often used, especially among British writers.
^Audi, Robert, ed. (1999).The Cambridge Dictionary of Philosophy (2nd ed.). Cambridge: Cambridge University Press. p. 43.ISBN0-521-63136-X.Argument: a sequence of statements such that some of them (thepremises) purport to give reasons to accept another of them, theconclusion
^Byrne, Patrick Hugh (1997).Analysis and Science in Aristotle. New York: State University of New York Press. p. 43.ISBN0791433218.
^Ryan, John (2018).Studies in Philosophy and the History of Philosophy, Volume 1. Washington, D.C.: CUA Press. p. 178.ISBN9780813231129.
^Potts, Robert (1864).Euclid's Elements of Geometry, Book 1. London: Longman, Green, Longman, Roberts, & Green. p. 50.
^abLuckhardt, C. Grant; Bechtel, William (1994).How to Do Things with Logic. Hillsdale, NJ: Lawrence Erlbaum Associates, Publishers. p. 13.ISBN0805800751.