Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Precision (statistics)

From Wikipedia, the free encyclopedia
Reciprocal of the statistical variance
For broader coverage of this topic, seeAccuracy and precision.

Instatistics, theprecision matrix orconcentration matrix is thematrix inverse of thecovariance matrix or dispersion matrix,P=Σ1{\displaystyle P=\Sigma ^{-1}}.[1][2][3]Forunivariate distributions, the precision matrix degenerates into ascalarprecision, defined as thereciprocal of thevariance,p=1σ2{\displaystyle p={\frac {1}{\sigma ^{2}}}}.[4]

Othersummary statistics ofstatistical dispersion also calledprecision (orimprecision[5][6])include the reciprocal of thestandard deviation,p=1σ{\displaystyle p={\frac {1}{\sigma }}};[3] the standard deviation itself and therelative standard deviation;[7]as well as thestandard error[8] and theconfidence interval (or its half-width, themargin of error).[9]

Usage

[edit]

One particular use of the precision matrix is in the context ofBayesian analysis of themultivariate normal distribution: for example, Bernardo & Smith prefer to parameterise the multivariate normal distribution in terms of the precision matrix, rather than the covariance matrix, because of certain simplifications that then arise.[10] For instance, if both theprior and thelikelihood haveGaussian form, and the precision matrix of both of these exist (because their covariance matrix is full rank and thus invertible), then the precision matrix of theposterior will simply be the sum of the precision matrices of the prior and the likelihood.

As the inverse of aHermitian matrix, the precision matrix of real-valued random variables, if it exists, ispositive definite and symmetrical.

Another reason the precision matrix may be useful is that if two dimensionsi{\displaystyle i} andj{\displaystyle j} of a multivariate normal areconditionally independent, then theij{\displaystyle ij} andji{\displaystyle ji} elements of the precision matrix are0{\displaystyle 0}. This means that precision matrices tend to be sparse when many of the dimensions are conditionally independent, which can lead to computational efficiencies when working with them. It also means that precision matrices are closely related to the idea ofpartial correlation.

The precision matrix plays a central role ingeneralized least squares, compared toordinary least squares, whereP{\displaystyle P} is theidentity matrix, and toweighted least squares, whereP{\displaystyle P} is diagonal (theweight matrix).

Etymology

[edit]

The termprecision in this sense ("mensura praecisionis observationum") first appeared in the works ofGauss (1809) "Theoria motus corporum coelestium in sectionibus conicis solem ambientium" (page 212). Gauss's definition differs from the modern one by a factor of2{\displaystyle {\sqrt {2}}}. He writes, for the density function of anormal distribution with precisionh{\displaystyle h} (reciprocal of standard deviation),

φΔ=hπehhΔΔ.{\displaystyle \varphi \Delta ={\frac {h}{\sqrt {\pi }}}\,e^{-hh\Delta \Delta }.}

wherehh=h2{\displaystyle hh=h^{2}} (seemodern exponential notation).Later Whittaker & Robinson (1924) "Calculus of observations" called this quantitythe modulus (of precision), but this term has dropped out of use.[11]

References

[edit]
  1. ^DeGroot, Morris H. (1969).Optimal Statistical Decisions. New York: McGraw-Hill. p. 56.
  2. ^Davidson, Russell;MacKinnon, James G. (1993).Estimation and Inference in Econometrics. New York: Oxford University Press. p. 144.ISBN 0-19-506011-3.
  3. ^abDodge, Y. (2003).The Oxford Dictionary of Statistical Terms. Oxford University Press.ISBN 0-19-920613-9.
  4. ^Bolstad, W.M.; Curran, J.M. (2016).Introduction to Bayesian Statistics. Wiley. p. 221.ISBN 978-1-118-59315-8. Retrieved2022-08-13.
  5. ^Natrella, M.G. (2013).Experimental Statistics. Dover Books on Mathematics (in Italian). Dover Publications. p. 21-PA14.ISBN 978-0-486-15455-8. Retrieved2022-08-14.
  6. ^Balakrishnan, N. (2009).Methods and Applications of Statistics in the Life and Health Sciences. Methods and Applications of Statistics. Wiley. p. 537.ISBN 978-0-470-40509-3. Retrieved2022-08-14.
  7. ^Ellison, S.L.R.; Farrant, T.J.; Barwick, V. (2009).Practical Statistics for the Analytical Scientist: A Bench Guide. Valid Analytical Measurement. Royal Society of Chemistry. p. 145.ISBN 978-0-85404-131-2. Retrieved2022-08-14.
  8. ^Wilburn, A.J. (1984).Practical Statistical Sampling for Auditors. Statistics: A Series of Textbooks and Monographs. Taylor & Francis. p. 62.ISBN 978-0-8247-7124-9. Retrieved2022-08-14.
  9. ^Cumming, G. (2013).Understanding The New Statistics: Effect Sizes, Confidence Intervals, and Meta-Analysis. Multivariate Applications Series. Taylor & Francis. p. 366.ISBN 978-1-136-65918-8. Retrieved2022-08-14.
  10. ^Bernardo, J. M. & Smith, A.F.M. (2000)Bayesian Theory, WileyISBN 0-471-49464-X
  11. ^"Earliest known uses of some of the words in mathematics".
Matrix classes
Explicitly constrained entries
Constant
Conditions oneigenvalues or eigenvectors
Satisfying conditions onproducts orinverses
With specific applications
Used instatistics
Used ingraph theory
Used in science and engineering
Related terms
Retrieved from "https://en.wikipedia.org/w/index.php?title=Precision_(statistics)&oldid=1220900688"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp