Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Pomeranchuk instability

From Wikipedia, the free encyclopedia

ThePomeranchuk instability is an instability in the shape of theFermi surface of a material with interactingfermions, causingLandau'sFermi liquid theory to break down. It occurs when a Landau parameter in Fermi liquid theory has a sufficiently negative value, causing deformations of the Fermi surface to be energetically favourable. It is named after theSoviet physicistIsaak Pomeranchuk.

Introduction: Landau parameter for a Fermi liquid

[edit]

In aFermi liquid,renormalized singleelectronpropagators (ignoringspin) areG(K)=Zk0ϵk+iηsgn(k0),{\displaystyle G(K)={\frac {Z}{k_{0}-\epsilon _{\vec {k}}+i\eta \operatorname {sgn}(k_{0})}}{\text{,}}}where capital momentum letters denotefour-vectorsK=(k0,k){\textstyle K=(k_{0},{\vec {k}})} and theFermi surface has zero energy; poles of this function determine thequasiparticle energy-momentumdispersion relation.[1] The four-point vertex functionΓ(K3,K4;K1,K2){\textstyle \Gamma _{(K_{3},K_{4};K_{1},K_{2})}} describes the diagram with two incoming electrons of momentumK1{\textstyle K_{1}} andK2{\textstyle K_{2}}; two outgoing electrons of momentumK3{\textstyle K_{3}} andK4{\textstyle K_{4}}; and amputated external lines:Γ(K3,K4;K1,K2)=i=12dXieiKiXii=34dXieiKiXiTψ(X3)ψ(X4)ψ(X1)ψ(X2)=(2π)8δ(K1K3)δ(K2K4)G(K1)G(K2)=(2π)8δ(K1K4)δ(K2K3)G(K1)G(K2)+=(2π)4δ(K1+K2K3K4)G(K1)G(K2)G(K3)G(K4)iΓ(K3,K4;K1,K2).{\displaystyle {\begin{aligned}\Gamma _{(K_{3},K_{4};K_{1},K_{2})}&=\int {\prod _{i=1}^{2}{dX_{i}\,e^{iK_{i}X_{i}}}\prod _{i=3}^{4}{dX_{i}\,e^{-iK_{i}X_{i}}}\langle T\psi ^{\dagger }(X_{3})\psi ^{\dagger }(X_{4})\psi (X_{1})\psi (X_{2})\rangle }\\&=(2\pi )^{8}\delta (K_{1}-K_{3})\delta (K_{2}-K_{4})G(K_{1})G(K_{2})-{}\\&{\phantom {{}={}}}(2\pi )^{8}\delta (K_{1}-K_{4})\delta (K_{2}-K_{3})G(K_{1})G(K_{2})+{}\\&{\phantom {{}={}}}(2\pi )^{4}\delta ({K_{1}+K_{2}-K_{3}-K_{4}})G(K_{1})G(K_{2})G(K_{3})G(K_{4})i\Gamma _{(K_{3},K_{4};K_{1},K_{2})}{\text{.}}\end{aligned}}} Call the momentum transferK=(k0,k)=K1K3.{\displaystyle K'=(k'_{0},{\vec {k'}})=K_{1}-K_{3}{\text{.}}} WhenK{\textstyle K'} is very small (the regime of interest here), theT-channel dominates theS- andU-channels. TheDyson equation then offers a simpler description of the four-point vertex function in terms of the 2-particle irreducibleΓ~{\textstyle {\tilde {\Gamma }}}, which corresponds to all diagrams connected after cutting two electron propagators:ΓK3,K4;K1,K2=Γ~K3,K4;K1,K2iQΓ~K3,Q+K;K1,QG(Q)G(Q+K)ΓQ,K4;Q+K,K2.{\displaystyle \Gamma _{K_{3},K_{4};K_{1},K_{2}}={\tilde {\Gamma }}_{K_{3},K_{4};K_{1},K_{2}}-i\sum _{Q}{\tilde {\Gamma }}_{K_{3},Q+K';K_{1},Q}G(Q)G(Q+K')\Gamma _{Q,K_{4};Q+K',K_{2}}{\text{.}}} Solving forΓ{\displaystyle \Gamma } shows that, in the similar-momentum, similar-wavelength limitkω1{\textstyle k'\ll \omega '\ll 1}, the former tends towards an operatorΓK1,K2ω{\textstyle \Gamma _{K_{1},K_{2}}^{\omega }} satisfyingL=Γ1(Γω)1,{\displaystyle L=\Gamma ^{-1}-(\Gamma ^{\omega })^{-1}{\text{,}}} where[2]LQ+K,QK;Q,Q=iδQ,QδK,KG(Q)G(K+Q).{\displaystyle L_{Q''+K'',Q'-K';Q'',Q'}=-i\delta _{Q'',Q'}\delta _{K'',K'}G(Q')G(K'+Q'){\text{.}}} The normalized Landau parameter is defined in terms ofΓK1,K2ω{\textstyle \Gamma _{K_{1},K_{2}}^{\omega }} asfkk=Z2NΓω((ϵF,k),(ϵF,k)),{\displaystyle f_{kk'}=Z^{2}N\Gamma ^{\omega }((\epsilon _{\rm {F}},{\vec {k}}),(\epsilon _{\rm {F}},{\vec {k'}})){\text{,}}} whereN=pFmFπ2{\textstyle N={\frac {p_{\mathrm {F} }m_{\mathrm {F} }^{*}}{\pi ^{2}}}} is the density of Fermi surface states. In theLegendre eigenbasis{P}{\textstyle \{P_{\ell }\}_{\ell }}, the parameterf{\textstyle f} admits the expansionfpFk^,pFk^==0P(k^k^)f.{\displaystyle f_{p_{\rm {F}}{\hat {k}},p_{\rm {F}}{\hat {k'}}}=\sum _{\ell =0}^{\infty }{P_{\ell }({\hat {k}}\cdot {\hat {k'}})f_{\ell }}{\text{.}}} Pomeranchuk's analysis revealed that eachf{\textstyle f_{\ell }} cannot be very negative.

Stability criterion

[edit]

In a 3D isotropic Fermi liquid, consider small density fluctuationsδnk=Θ(|k|pF)Θ(|k|pF(k^)){\textstyle \delta n_{k}=\Theta (|k|-p_{\mathrm {F} })-\Theta (|k|-p_{\mathrm {F} }'({\hat {k}}))} around theFermi momentumpF{\textstyle p_{\mathrm {F} }}, where the shift in Fermi surface expands inspherical harmonics aspF(k^)=l=0Yl,m(k^)δϕlm.{\displaystyle p_{\rm {F}}'({\hat {k}})=\sum _{l=0}^{\infty }Y_{l,m}({\hat {k}})\delta \phi _{lm}{\text{.}}} The energy associated with a perturbation is approximated by the functionalE=kϵkδnk+k,k12NVfkkδnkδnk{\displaystyle E=\sum _{\vec {k}}\epsilon _{\vec {k}}\delta n_{\vec {k}}+\sum _{{\vec {k}},{\vec {k'}}}{{\frac {1}{2NV}}f_{{\vec {k}}{\vec {k'}}}\delta n_{\vec {k}}\delta n_{\vec {k'}}}} whereϵk=vF(|k|pF){\textstyle {\vec {\epsilon _{k}}}=v_{\mathrm {F} }(|{\vec {k}}|-p_{\mathrm {F} })}. Assuming|δϕlm||pF|{\textstyle |\delta \phi _{lm}|\ll |p_{\rm {F}}|}, these terms are,[3]kϵkδnk=2(2π)3d2k^pFpF(k^)vF(ppF)p2dp=pF2vF(2π)3lm(δϕlm)24π2l+1(l+m)!(lm)!k,kfkkδnkδnk=2pF4(2π)6d2k^d2k^(pF(k^)pF)(pF(k^)F)fpFk^,pFk^{\displaystyle {\begin{aligned}&\sum _{k}\epsilon _{k}\delta n_{k}={\frac {2}{(2\pi )^{3}}}\int d^{2}{\hat {k}}\int _{p_{\rm {F}}}^{p_{\rm {F}}'({\hat {k}})}v_{\rm {F}}(p'-p_{\rm {F}})p'^{2}dp'={\frac {p_{\rm {F}}^{2}v_{\rm {F}}}{(2\pi )^{3}}}\sum _{lm}(\delta \phi _{lm})^{2}{\frac {4\pi }{2l+1}}{\frac {(l+m)!}{(l-m)!}}\\&\sum _{k,k'}f_{kk'}\delta n_{k}\delta n_{k'}={\frac {2p_{\rm {F}}^{4}}{(2\pi )^{6}}}\int d^{2}{\hat {k}}d^{2}{\hat {k'}}(p_{\rm {F}}'({\hat {k}})-p_{\rm {F}})(p_{\rm {F}}'({\hat {k'}})_{\rm {F}})f_{p_{\rm {F}}{\hat {k}},p_{\rm {F}}{\hat {k'}}}\end{aligned}}} and soE=pF2vF2(π)2lm(δϕlm)2(l+m)!(2l+1)(lm)!(1+fl2l+1).{\displaystyle E={\frac {p_{\rm {F}}^{2}v_{\rm {F}}}{2(\pi )^{2}}}\sum _{lm}(\delta \phi _{lm})^{2}{\frac {(l+m)!}{(2l+1)(l-m)!}}\left(1+{\frac {f_{l}}{2l+1}}\right){\text{.}}}

When thePomeranchuk stability criterionfl>(2l+1){\displaystyle f_{l}>-(2l+1)} is satisfied, this value is positive, and the Fermi surface distortionδϕlm{\textstyle \delta \phi _{lm}} requires energy to form. Otherwise,δϕlm{\textstyle \delta \phi _{lm}} releases energy, and will grow without bound until the model breaks down. That process is known asPomeranchuk instability.

In 2D, a similar analysis, with circular wave fluctuationseilθ{\textstyle \propto e^{il\theta }} instead of spherical harmonics andChebyshev polynomials instead of Legendre polynomials, shows the Pomeranchuk constraint to befl>1{\textstyle f_{l}>-1}.[4] In anisotropic materials, the same qualitative result is true—for sufficiently negative Landau parameters, unstable fluctuations spontaneously destroy the Fermi surface.

The point at whichFl=(2l+1){\displaystyle F_{l}=-(2l+1)} is of much theoretical interest as it indicates aquantum phase transition from a Fermi liquid to a different state of matter Above zero temperature a quantum critical state exists.[5]

Physical quantities with manifest Pomeranchuk criterion

[edit]

Many physical quantities in Fermi liquid theory are simple expressions of components of Landau parameters. A few standard ones are listed here; they diverge or become unphysical beyond the quantum critical point.[6]

Isothermalcompressibility:κ=1VVP=N/n21+f0{\displaystyle \kappa =-{\frac {1}{V}}{\frac {\partial V}{\partial P}}={\frac {N/n^{2}}{1+f_{0}}}}

Effective mass:m=pFvF=m(1+f1/3){\displaystyle m^{*}={\frac {p_{\rm {F}}}{v_{\rm {F}}}}=m(1+f_{1}/3)}

Speed of first sound:C=pF2(1+f0)m2(3+f1){\displaystyle C={\sqrt {\frac {p_{\rm {F}}^{2}(1+f_{0})}{m^{2}(3+f_{1})}}}}

Unstable zero sound modes

[edit]

The Pomeranchuk instability manifests in the dispersion relation for thezeroth sound, which describes how the localized fluctuations of the momentum density functionδnk{\textstyle \delta n_{k}} propagate through space and time.[1]

Just as the quasiparticle dispersion is given by the pole of the one-particle propagator, the zero sound dispersion relation is given by the pole of theT-channel of the vertex functionΓ(K3,K4;K1,K2){\textstyle \Gamma (K_{3},K_{4};K_{1},K_{2})} near smallK1K3{\textstyle K_{1}-K_{3}}. Physically, this describes the propagation of an electron hole pair, which is responsible for the fluctuations inδnk{\textstyle \delta n_{k}}.

From the relationΓ=((Γω)1L)1{\textstyle \Gamma =((\Gamma ^{\omega })^{-1}-L)^{-1}} and ignoring the contributions off{\textstyle f_{\ell }} for>0{\textstyle \ell >0}, the zero sound spectrum is given by the four-vectorsK=(ω(k),k){\displaystyle K'=(\omega ({\vec {k'}}),{\vec {k'}})} satisfyingZ2Nf0=iQG(Q+K)G(Q+K).{\displaystyle {\frac {Z^{2}N}{f_{0}}}=-i\sum _{Q}G(Q+K')G(Q+K){\text{.}}} Equivalently,

1f0=Φ(s,x)=(sx/2)214xln((sx/2)+1(sx/2)1)(s+x/2)214xln((s+x/2)+1(s+x/2)1)+12{\displaystyle {\frac {-1}{f_{0}}}=\Phi (s,x)={\frac {(s-x/2)^{2}-1}{4x}}\ln {\!\left({\frac {(s-x/2)+1}{(s-x/2)-1}}\right)}-{\frac {(s+x/2)^{2}-1}{4x}}\ln {\!\left({\frac {(s+x/2)+1}{(s+x/2)-1}}\right)}+{\frac {1}{2}}}1

wheres=ω(k)|k|pF{\textstyle s={\frac {\omega ({\vec {k}})}{|{\vec {k}}|p_{\rm {F}}}}} andx=|k|pF{\textstyle x={\frac {|k|}{p_{\rm {F}}}}}.

Whenf0>0{\displaystyle f_{0}>0}, the equation (1) can beimplicitly solved for a real solutions(x){\displaystyle s(x)}, corresponding to a real dispersion relation of oscillatory waves.

Whenf0<0{\displaystyle f_{0}<0}, the solutions(x){\displaystyle s(x)} is pureimaginary, corresponding to an exponential change in amplitude over time. For1<f0<0{\displaystyle -1<f_{0}<0}, the imaginary part(s(x))<0{\displaystyle \Im (s(x))<0}, damping waves of zeroth sound. But for1>f0{\displaystyle -1>f_{0}} and sufficiently smallx{\displaystyle x}, the imaginary part(s(x))>0{\displaystyle \Im (s(x))>0}, implying exponential growth of any low-momentum zero sound perturbation.[2]

Nematic phase transition

[edit]

Pomeranchuk instabilities in non-relativistic systems atl=1{\displaystyle l=1} cannot exist.[7] However, instabilities atl=2{\displaystyle l=2} have interesting solid state applications. From the form of spherical harmonicsY2,m(θ,ϕ){\displaystyle Y_{2,m}(\theta ,\phi )} (ore2iθ{\displaystyle e^{2i\theta }} in 2D), the Fermi surface is distorted into an ellipsoid (or ellipse). Specifically, in 2D, the quadrupole moment order parameterQ~(q)=ke2iθqψk+qψk{\displaystyle {\tilde {Q}}(q)=\sum _{k}e^{2i\theta _{q}}\psi _{k+q}^{\dagger }\psi _{k}} has nonzerovacuum expectation value in thel=2{\displaystyle l=2} Pomeranchuk instability. The Fermi surface has eccentricity|Q~(0)|{\displaystyle |\langle {\tilde {Q}}(0)\rangle |} and spontaneous major axis orientationθ=arg(Q~(0)){\displaystyle \theta =\arg(\langle {\tilde {Q}}(0)\rangle )}. Gradual spatial variation inθ(r){\displaystyle \theta ({\vec {r}})} forms gaplessGoldstone modes, forming a nematic liquid statistically analogous to a liquid crystal. Oganesyan et al.'s analysis[8] of a model interaction between quadrupole moments predicts damped zero sound fluctuations of the quadrupole moment condensate for waves oblique to the ellipse axes.

The 2d square tight-binding Hubbard Hamiltonian with next-to-nearest neighbour interaction has been found by Halboth and Metzner[9] to display instability in susceptibility ofd-wave fluctuations underrenormalization group flow. Thus, the Pomeranchuk instability is suspected to explain the experimentally measured anisotropy incuprate superconductors such as LSCO andYBCO.[10]

See also

[edit]

References

[edit]
  1. ^abLifshitz, E.M. and Pitaevskii, L.P., Statistical Physics, Part 2 (Pergamon, 1980)
  2. ^abKolomeitsev, E. E.; Voskresensky, D. N. (2016). "Scalar quanta in Fermi liquids: Zero sounds, instabilities, Bose condensation, and a metastable state in dilute nuclear matter".The European Physical Journal A.52 (12). Springer Nature: 362.arXiv:1610.09748.Bibcode:2016EPJA...52..362K.doi:10.1140/epja/i2016-16362-0.ISSN 1434-6001.
  3. ^Pomeranchuk, I. Ya., Sov.Phys.JETP,8,361 (1958)
  4. ^Reidy, K. E. Fermi liquids near Pomeranchuk instabilities. Diss. Kent State University, 2014.
  5. ^Nilsson, Johan; Castro Neto, A. H. (2005-11-14). "Heat bath approach to Landau damping and Pomeranchuk quantum critical points".Physical Review B.72 (19) 195104. American Physical Society (APS).arXiv:cond-mat/0506146.Bibcode:2005PhRvB..72s5104N.doi:10.1103/physrevb.72.195104.ISSN 1098-0121.
  6. ^Baym, G., and Pethick, Ch., Landau Fermi-Liquid Theory (Wiley-VCH, Weinheim, 2004, 2nd. Edition).
  7. ^Kiselev, Egor I.; Scheurer, Mathias S.; Wölfle, Peter; Schmalian, Jörg (2017-03-20). "Limits on dynamically generated spin-orbit coupling: Absence ofl=1Pomeranchuk instabilities in metals".Physical Review B.95 (12) 125122. American Physical Society (APS).arXiv:1611.01442.Bibcode:2017PhRvB..95l5122K.doi:10.1103/physrevb.95.125122.ISSN 2469-9950.
  8. ^Oganesyan, Vadim; Kivelson, Steven A.; Fradkin, Eduardo (2001-10-17). "Quantum theory of a nematic Fermi fluid".Physical Review B.64 (19) 195109. American Physical Society (APS).arXiv:cond-mat/0102093.Bibcode:2001PhRvB..64s5109O.doi:10.1103/physrevb.64.195109.ISSN 0163-1829.
  9. ^Halboth, Christoph J.; Metzner, Walter (2000-12-11). "d-Wave Superconductivity and Pomeranchuk Instability in the Two-Dimensional Hubbard Model".Physical Review Letters.85 (24). American Physical Society (APS):5162–5165.arXiv:cond-mat/0003349.Bibcode:2000PhRvL..85.5162H.doi:10.1103/physrevlett.85.5162.ISSN 0031-9007.
  10. ^Kitatani, Motoharu; Tsuji, Naoto; Aoki, Hideo (2017-02-03)."Interplay of Pomeranchuk instability and superconductivity in the two-dimensional repulsive Hubbard model".Physical Review B.95 (7) 075109. American Physical Society (APS).arXiv:1609.05759.Bibcode:2017PhRvB..95g5109K.doi:10.1103/physrevb.95.075109.ISSN 2469-9950.
Retrieved from "https://en.wikipedia.org/w/index.php?title=Pomeranchuk_instability&oldid=1317133033"
Category:

[8]ページ先頭

©2009-2025 Movatter.jp