Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Polynomial and rational function modeling

From Wikipedia, the free encyclopedia

Instatistical modeling (especiallyprocess modeling), polynomial functions and rational functions are sometimes used as an empirical technique forcurve fitting.

Polynomial function models

[edit]
Main articles:polynomial interpolation andpolynomial regression

Apolynomial function is one that has the form

y=anxn+an1xn1++a2x2+a1x+a0{\displaystyle y=a_{n}x^{n}+a_{n-1}x^{n-1}+\cdots +a_{2}x^{2}+a_{1}x+a_{0}}

wheren is a non-negativeinteger that defines the degree of the polynomial. A polynomial with a degree of 0 is simply aconstant function; with a degree of 1 is aline; with a degree of 2 is aquadratic; with a degree of 3 is acubic, and so on.

Historically, polynomial models are among the most frequently used empirical models forcurve fitting.

Advantages

[edit]

These models are popular for the following reasons.

  1. Polynomial models have a simple form.
  2. Polynomial models have well known and understood properties.
  3. Polynomial models have moderate flexibility of shapes.
  4. Polynomial models are a closed family.Changes of location andscale in the raw data result in a polynomial model being mapped to a polynomial model. That is, polynomial models are not dependent on the underlyingmetric.
  5. Polynomial models are computationally easy to use.

Disadvantages

[edit]

However, polynomial models also have the following limitations.

  1. Polynomial models have poorinterpolatory properties. High-degree polynomials are notorious foroscillations between exact-fit values.
  2. Polynomial models have poorextrapolatory properties. Polynomials may provide good fits within the range of data, but they will frequently deteriorate rapidly outside the range of the data.
  3. Polynomial models have poorasymptotic properties. By their nature, polynomials have a finite response for finitex values and have an infinite response if and only if thex value is infinite. Thus polynomials may not model asymptotic phenomena very well.
  4. While no procedure is immune to thebias-variance tradeoff, polynomial models exhibit a particularly poor tradeoff between shape and degree. In order to model data with a complicated structure, the degree of the model must be high, indicating that the associated number ofparameters to beestimated will also be high. This can result in highly unstable models.

When modeling via polynomial functions is inadequate due to any of the limitations above, the use of rational functions for modeling may give a better fit.

Rational function models

[edit]

Arational function is simply the ratio of two polynomial functions.

y=anxn+an1xn1++a2x2+a1x+a0bmxm+bm1xm1++b2x2+b1x+b0{\displaystyle y={\frac {a_{n}x^{n}+a_{n-1}x^{n-1}+\ldots +a_{2}x^{2}+a_{1}x+a_{0}}{b_{m}x^{m}+b_{m-1}x^{m-1}+\ldots +b_{2}x^{2}+b_{1}x+b_{0}}}}

withn denoting a non-negative integer that defines the degree of the numerator andm denoting a non-negative integer that defines the degree of the denominator. For fitting rational function models, the constant term in the denominator is usually set to 1. Rational functions are typically identified by the degrees of the numerator and denominator. For example, a quadratic for the numerator and a cubic for the denominator is identified as a quadratic/cubic rational function. The rational function model is a generalization of the polynomial model: rational function models contain polynomial models as a subset (i.e., the case when the denominator is a constant).

Advantages

[edit]

Rational function models have the following advantages:

  1. Rational function models have a moderately simple form.
  2. Rational function models are a closed family. As with polynomial models, this means that rational function models are not dependent on the underlying metric.
  3. Rational function models can take on an extremely wide range of shapes, accommodating a much wider range of shapes than does the polynomial family.
  4. Rational function models have better interpolatory properties than polynomial models. Rational functions are typically smoother and less oscillatory than polynomial models.
  5. Rational functions have excellent extrapolatory powers. Rational functions can typically be tailored to model the function not only within the domain of the data, but also so as to be in agreement with theoretical/asymptotic behavior outside the domain of interest.
  6. Rational function models have excellent asymptotic properties. Rational functions can be either finite or infinite for finite values, or finite or infinite for infinitex values. Thus, rational functions can easily be incorporated into a rational function model.
  7. Rational function models can often be used to model complicated structure with a fairly low degree in both the numerator and denominator. This in turn means that fewer coefficients will be required compared to the polynomial model.
  8. Rational function models are moderately easy to handle computationally. Although they arenonlinear models, rational function models are particularly easy nonlinear models to fit.
  9. One common difficulty in fitting nonlinear models is finding adequate starting values. A major advantage of rational function models is the ability to compute starting values using alinear least squares fit. To do this,p points are chosen from the data set, withp denoting the number of parameters in the rational model. For example, given the linear/quadratic model
y=A0+A1x1+B1x+B2x2,{\displaystyle y={\frac {A_{0}+A_{1}x}{1+B_{1}x+B_{2}x^{2}}},}
one would need to select four representative points, and perform a linear fit on the model
y=A0+A1xB1xyB2x2y,{\displaystyle y=A_{0}+A_{1}x-B_{1}xy-B_{2}x^{2}y,}
which is derived from the previous equation by clearing the denominator. Here, thex andy contain the subset of points, not the full data set. The estimated coefficients from this linear fit are used as the starting values for fitting the nonlinear model to the full data set.
This type of fit, with the response variable appearing on both sides of the function, should only be used to obtain starting values for the nonlinear fit. The statistical properties of fits like this are not well understood.
The subset of points should be selected over the range of the data. It is not critical which points are selected, although obvious outliers should be avoided.

Disadvantages

[edit]

Rational function models have the following disadvantages:

  1. The properties of the rational function family are not as well known to engineers and scientists as are those of the polynomial family. The literature on the rational function family is also more limited. Because the properties of the family are often not well understood, it can be difficult to answer the following modeling question:Given that data has a certain shape, what values should be chosen for the degree of the numerator and the degree on the denominator?
  2. Unconstrained rational function fitting can, at times, result in undesired verticalasymptotes due to roots in the denominator polynomial. The range ofx values affected by the function "blowing up" may be quite narrow, but such asymptotes, when they occur, are a nuisance for local interpolation in the neighborhood of the asymptote point. These asymptotes are easy to detect by a simple plot of the fitted function over the range of the data. These nuisance asymptotes occur occasionally and unpredictably, but practitioners argue that the gain in flexibility of shapes is well worth the chance that they may occur, and that such asymptotes should not discourage choosing rational function models for empirical modeling.

See also

[edit]

Bibliography

[edit]

Historical

[edit]

External links

[edit]
Computational statistics
Correlation and dependence
Regression analysis
Regression as a
statistical model
Linear regression
Predictor structure
Non-standard
Non-normal errors
Decomposition of variance
Model exploration
Background
Design of experiments
Numericalapproximation
Applications
Continuous data
Center
Dispersion
Shape
Count data
Summary tables
Dependence
Graphics
Study design
Survey methodology
Controlled experiments
Adaptive designs
Observational studies
Statistical theory
Frequentist inference
Point estimation
Interval estimation
Testing hypotheses
Parametric tests
Specific tests
Goodness of fit
Rank statistics
Bayesian inference
Correlation
Regression analysis (see alsoTemplate:Least squares and regression analysis
Linear regression
Non-standard predictors
Generalized linear model
Partition of variance
Categorical
Multivariate
Time-series
General
Specific tests
Time domain
Frequency domain
Survival
Survival function
Hazard function
Test
Biostatistics
Engineering statistics
Social statistics
Spatial statistics

Public Domain This article incorporatespublic domain material from the National Institute of Standards and Technology

Retrieved from "https://en.wikipedia.org/w/index.php?title=Polynomial_and_rational_function_modeling&oldid=1092811845"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp