Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Polydivisible number

From Wikipedia, the free encyclopedia
Number whose first n digits is a multiple of n
icon
This articleneeds additional citations forverification. Please helpimprove this article byadding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Polydivisible number" – news ·newspapers ·books ·scholar ·JSTOR
(October 2018) (Learn how and when to remove this message)

Inmathematics apolydivisible number (ormagic number) is anumber in a givennumber base withdigitsabcde... that has the following properties:[1]

  1. Its first digita is not 0.
  2. The number formed by its first two digitsab is a multiple of 2.
  3. The number formed by its first three digitsabc is a multiple of 3.
  4. The number formed by its first four digitsabcd is a multiple of 4.
  5. etc.

Definition

[edit]

Letn{\displaystyle n} be a positive integer, and letk=logbn+1{\displaystyle k=\lfloor \log _{b}{n}\rfloor +1} be the number of digits inn written in baseb. The numbern is apolydivisible number if for all1ik{\displaystyle 1\leq i\leq k},

nbki0(modi){\displaystyle \left\lfloor {\frac {n}{b^{k-i}}}\right\rfloor \equiv 0{\pmod {i}}}.
Example

For example, 10801 is a seven-digit polydivisible number inbase 4, as

10801471=108014096=20(mod1),{\displaystyle \left\lfloor {\frac {10801}{4^{7-1}}}\right\rfloor =\left\lfloor {\frac {10801}{4096}}\right\rfloor =2\equiv 0{\pmod {1}},}
10801472=108011024=100(mod2),{\displaystyle \left\lfloor {\frac {10801}{4^{7-2}}}\right\rfloor =\left\lfloor {\frac {10801}{1024}}\right\rfloor =10\equiv 0{\pmod {2}},}
10801473=10801256=420(mod3),{\displaystyle \left\lfloor {\frac {10801}{4^{7-3}}}\right\rfloor =\left\lfloor {\frac {10801}{256}}\right\rfloor =42\equiv 0{\pmod {3}},}
10801474=1080164=1680(mod4),{\displaystyle \left\lfloor {\frac {10801}{4^{7-4}}}\right\rfloor =\left\lfloor {\frac {10801}{64}}\right\rfloor =168\equiv 0{\pmod {4}},}
10801475=1080116=6750(mod5),{\displaystyle \left\lfloor {\frac {10801}{4^{7-5}}}\right\rfloor =\left\lfloor {\frac {10801}{16}}\right\rfloor =675\equiv 0{\pmod {5}},}
10801476=108014=27000(mod6),{\displaystyle \left\lfloor {\frac {10801}{4^{7-6}}}\right\rfloor =\left\lfloor {\frac {10801}{4}}\right\rfloor =2700\equiv 0{\pmod {6}},}
10801477=108011=108010(mod7).{\displaystyle \left\lfloor {\frac {10801}{4^{7-7}}}\right\rfloor =\left\lfloor {\frac {10801}{1}}\right\rfloor =10801\equiv 0{\pmod {7}}.}

Enumeration

[edit]

For any given baseb{\displaystyle b}, there are only a finite number of polydivisible numbers.

Maximum polydivisible number

[edit]

The following table lists maximum polydivisible numbers for some basesb, whereA−Z represent digit values 10 to 35.

Baseb{\displaystyle b}Maximum polydivisible number (OEISA109032)Number of base-b digits (OEISA109783)
21022
320 022036
4222 030147
540220 42200510
1036085 28850 36840 07860 36725[2][3][4]25
126068 903468 50BA68 00B036 2064641228

Estimate forFb(n) and Σ(b)

[edit]
Graph of number ofn{\displaystyle n}-digit polydivisible numbers in base 10F10(n){\displaystyle F_{10}(n)} vs estimate ofF10(n){\displaystyle F_{10}(n)}

Letn{\displaystyle n} be the number of digits. The functionFb(n){\displaystyle F_{b}(n)} determines the number of polydivisible numbers that hasn{\displaystyle n} digits in baseb{\displaystyle b}, and the functionΣ(b){\displaystyle \Sigma (b)} is the total number of polydivisible numbers in baseb{\displaystyle b}.

Ifk{\displaystyle k} is a polydivisible number in baseb{\displaystyle b} withn1{\displaystyle n-1} digits, then it can be extended to create a polydivisible number withn{\displaystyle n} digits if there is a number betweenbk{\displaystyle bk} andb(k+1)1{\displaystyle b(k+1)-1} that is divisible byn{\displaystyle n}. Ifn{\displaystyle n} is less or equal tob{\displaystyle b}, then it is always possible to extend ann1{\displaystyle n-1} digit polydivisible number to ann{\displaystyle n}-digit polydivisible number in this way, and indeed there may be more than one possible extension. Ifn{\displaystyle n} is greater thanb{\displaystyle b}, it is not always possible to extend a polydivisible number in this way, and asn{\displaystyle n} becomes larger, the chances of being able to extend a given polydivisible number become smaller. On average, each polydivisible number withn1{\displaystyle n-1} digits can be extended to a polydivisible number withn{\displaystyle n} digits inbn{\displaystyle {\frac {b}{n}}} different ways. This leads to the following estimate forFb(n){\displaystyle F_{b}(n)}:

Fb(n)(b1)bn1n!.{\displaystyle F_{b}(n)\approx (b-1){\frac {b^{n-1}}{n!}}.}

Summing over all values of n, this estimate suggests that the total number of polydivisible numbers will be approximately

Σ(b)b1b(eb1){\displaystyle \Sigma (b)\approx {\frac {b-1}{b}}(e^{b}-1)}
Baseb{\displaystyle b}Σ(b){\displaystyle \Sigma (b)}Est. ofΣ(b){\displaystyle \Sigma (b)}Percent Error
22e2123.1945{\displaystyle {\frac {e^{2}-1}{2}}\approx 3.1945}59.7%
31523(e31)12.725{\displaystyle {\frac {2}{3}}(e^{3}-1)\approx 12.725}-15.1%
43734(e41)40.199{\displaystyle {\frac {3}{4}}(e^{4}-1)\approx 40.199}8.64%
512745(e51)117.93{\displaystyle {\frac {4}{5}}(e^{5}-1)\approx 117.93}−7.14%
1020456[2]910(e101)19823{\displaystyle {\frac {9}{10}}(e^{10}-1)\approx 19823}-3.09%

Specific bases

[edit]

All numbers are represented in baseb{\displaystyle b}, using A−Z to represent digit values 10 to 35.

Base 2

[edit]
LengthnF2(n)Est. of F2(n)Polydivisible numbers
1111
21110

Base 3

[edit]
LengthnF3(n)Est. of F3(n)Polydivisible numbers
1221, 2
23311, 20, 22
333110, 200, 220
4321100, 2002, 2200
52111002, 20022
621110020, 200220
700{\displaystyle \varnothing }

Base 4

[edit]
LengthnF4(n)Est. of F4(n)Polydivisible numbers
1331, 2, 3
26610, 12, 20, 22, 30, 32
388102, 120, 123, 201, 222, 300, 303, 321
4881020, 1200, 1230, 2010, 2220, 3000, 3030, 3210
57610202, 12001, 12303, 20102, 22203, 30002, 32103
644120012, 123030, 222030, 321030
7122220301
801{\displaystyle \varnothing }

Base 5

[edit]

The polydivisible numbers in base 5 are

1, 2, 3, 4, 11, 13, 20, 22, 24, 31, 33, 40, 42, 44, 110, 113, 132, 201, 204, 220, 223, 242, 311, 314, 330, 333, 402, 421, 424, 440, 443, 1102, 1133, 1322, 2011, 2042, 2200, 2204, 2231, 2420, 2424, 3113, 3140, 3144, 3302, 3333, 4022, 4211, 4242, 4400, 4404, 4431, 11020, 11330, 13220, 20110, 20420, 22000, 22040, 22310, 24200, 24240, 31130, 31400, 31440, 33020, 33330, 40220, 42110, 42420, 44000, 44040, 44310, 110204, 113300, 132204, 201102, 204204, 220000, 220402, 223102, 242000, 242402, 311300, 314000, 314402, 330204, 333300, 402204, 421102, 424204, 440000, 440402, 443102, 1133000, 1322043, 2011021, 2042040, 2204020, 2420003, 2424024, 3113002, 3140000, 3144021, 4022042, 4211020, 4431024, 11330000, 13220431, 20110211, 20420404, 24200031, 31400004, 31440211, 40220422, 42110202, 44310242, 132204314, 201102110, 242000311, 314000044, 402204220, 443102421, 1322043140, 2011021100, 3140000440, 4022042200

The smallest base 5 polydivisible numbers withn digits are

1, 11, 110, 1102, 11020, 110204, 1133000, 11330000, 132204314, 1322043140, none...

The largest base 5 polydivisible numbers withn digits are

4, 44, 443, 4431, 44310, 443102, 4431024, 44310242, 443102421, 4022042200, none...

The number of base 5 polydivisible numbers withn digits are

4, 10, 17, 21, 21, 21, 13, 10, 6, 4, 0, 0, 0...
LengthnF5(n)Est. of F5(n)
144
21010
31717
42121
52121
62117
71312
8108
964
1042

Base 10

[edit]

The polydivisible numbers in base 10 are

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 102, 105, 108, 120, 123, 126, 129, 141, 144, 147, 162, 165, 168, 180, 183, 186, 189, 201, 204, 207, 222, 225, 228, 243, 246, 249, 261, 264, 267, 282, 285, 288... (sequenceA144688 in theOEIS)

The smallest base 10 polydivisible numbers withn digits are

1, 10, 102, 1020, 10200, 102000, 1020005, 10200056, 102000564, 1020005640, 10200056405, 102006162060, 1020061620604, 10200616206046, 102006162060465, 1020061620604656, 10200616206046568, 108054801036000018, 1080548010360000180, 10805480103600001800, ... (sequenceA214437 in theOEIS)

The largest base 10 polydivisible numbers withn digits are

9, 98, 987, 9876, 98765, 987654, 9876545, 98765456, 987654564, 9876545640, 98765456405, 987606963096, 9876069630960, 98760696309604, 987606963096045, 9876062430364208, 98485872309636009, 984450645096105672, 9812523240364656789, 96685896604836004260, ... (sequenceA225608 in theOEIS)

The number of base 10 polydivisible numbers withn digits are

9, 45, 150, 375, 750, 1200, 1713, 2227, 2492, 2492, 2225, 2041, 1575, 1132, 770, 571, 335, 180, 90, 44, 18, 12, 6, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... (sequenceA143671 in theOEIS)
LengthnF10(n)[5]Est. of F10(n)
199
24545
3150150
4375375
5750750
612001250
717131786
822272232
924922480
1024922480
1122252255
1220411879
1315751445
1411321032
15770688
16571430
17335253
18180141
199074
204437
211817
22128
2363
2431
2511

Programming example

[edit]

The example below searches for polydivisible numbers inPython.

deffind_polydivisible(base:int)->list[int]:"""Find polydivisible number."""numbers=[]previous=[iforiinrange(1,base)]new=[]digits=2whilenotprevious==[]:numbers.append(previous)forninprevious:forjinrange(0,base):number=n*base+jifnumber%digits==0:new.append(number)previous=newnew=[]digits=digits+1returnnumbers

Related problems

[edit]

Polydivisible numbers represent a generalization of the following well-known[2] problem inrecreational mathematics:

Arrange the digits 1 to 9 in order so that the first two digits form a multiple of 2, the first three digits form a multiple of 3, the first four digits form a multiple of 4 etc. and finally the entire number is a multiple of 9.

The solution to the problem is a nine-digit polydivisible number with the additional condition that it contains the digits 1 to 9 exactly once each. There are 2,492 nine-digit polydivisible numbers, but the only one that satisfies the additional condition is

381 654 729[6]

Other problems involving polydivisible numbers include:

  • Finding polydivisible numbers with additional restrictions on the digits - for example, the longest polydivisible number that only uses even digits is
48 000 688 208 466 084 040
  • Findingpalindromic polydivisible numbers - for example, the longest palindromic polydivisible number is
30 000 600 003
  • A common, trivial extension of the aforementioned example is to arrange the digits 0 to 9 to make a 10 digit number in the same way, the result is 3816547290. This is apandigital polydivisible number.

References

[edit]
  1. ^De, Moloy,MATH'S BELIEVE IT OR NOT
  2. ^abcParker, Matt (2014),"Can you digit?",Things to Make and Do in the Fourth Dimension, Particular Books, pp. 7–8,ISBN 9780374275655 – via Google Books
  3. ^Wells, David (1986),The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, p. 197,ISBN 9780140261493 – via Google Books
  4. ^Lines, Malcolm (1986),"How Do These Series End?",A Number for your Thoughts, Taylor and Francis Group, p. 90,ISBN 9780852744956
  5. ^(sequenceA143671 in theOEIS)
  6. ^Lanier, Susie,Nine Digit Number

External links

[edit]
Classes ofnatural numbers
Powers and related numbers
Of the forma × 2b ± 1
Other polynomial numbers
Recursively defined numbers
Possessing a specific set of other numbers
Expressible via specific sums
2-dimensional
centered
non-centered
3-dimensional
centered
non-centered
pyramidal
4-dimensional
non-centered
Combinatorial numbers
Divisor functions
Prime omega functions
Euler's totient function
Aliquot sequences
Primorial
Otherprime factor ordivisor related numbers
Numeral system-dependent numbers
Arithmetic functions
anddynamics
Digit sum
Digit product
Coding-related
Other
P-adic numbers-related
Digit-composition related
Digit-permutation related
Divisor-related
Other
Generated via asieve
Sorting related
Graphemics related
Divisibility-based sets of integers
Overview
Divisibility of 60
Factorization forms
Constrained divisor sums
With many divisors
Aliquot sequence-related
Base-dependent
Other sets
Retrieved from "https://en.wikipedia.org/w/index.php?title=Polydivisible_number&oldid=1326519015"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp