Number whose first n digits is a multiple of n
Inmathematics apolydivisible number (ormagic number ) is anumber in a givennumber base withdigits abcde... that has the following properties:[ 1]
Its first digita is not 0. The number formed by its first two digitsab is a multiple of 2. The number formed by its first three digitsabc is a multiple of 3. The number formed by its first four digitsabcd is a multiple of 4. etc. Letn {\displaystyle n} be a positive integer, and letk = ⌊ log b n ⌋ + 1 {\displaystyle k=\lfloor \log _{b}{n}\rfloor +1} be the number of digits inn written in baseb . The numbern is apolydivisible number if for all1 ≤ i ≤ k {\displaystyle 1\leq i\leq k} ,
⌊ n b k − i ⌋ ≡ 0 ( mod i ) {\displaystyle \left\lfloor {\frac {n}{b^{k-i}}}\right\rfloor \equiv 0{\pmod {i}}} .Example For example, 10801 is a seven-digit polydivisible number inbase 4 , as
⌊ 10801 4 7 − 1 ⌋ = ⌊ 10801 4096 ⌋ = 2 ≡ 0 ( mod 1 ) , {\displaystyle \left\lfloor {\frac {10801}{4^{7-1}}}\right\rfloor =\left\lfloor {\frac {10801}{4096}}\right\rfloor =2\equiv 0{\pmod {1}},} ⌊ 10801 4 7 − 2 ⌋ = ⌊ 10801 1024 ⌋ = 10 ≡ 0 ( mod 2 ) , {\displaystyle \left\lfloor {\frac {10801}{4^{7-2}}}\right\rfloor =\left\lfloor {\frac {10801}{1024}}\right\rfloor =10\equiv 0{\pmod {2}},} ⌊ 10801 4 7 − 3 ⌋ = ⌊ 10801 256 ⌋ = 42 ≡ 0 ( mod 3 ) , {\displaystyle \left\lfloor {\frac {10801}{4^{7-3}}}\right\rfloor =\left\lfloor {\frac {10801}{256}}\right\rfloor =42\equiv 0{\pmod {3}},} ⌊ 10801 4 7 − 4 ⌋ = ⌊ 10801 64 ⌋ = 168 ≡ 0 ( mod 4 ) , {\displaystyle \left\lfloor {\frac {10801}{4^{7-4}}}\right\rfloor =\left\lfloor {\frac {10801}{64}}\right\rfloor =168\equiv 0{\pmod {4}},} ⌊ 10801 4 7 − 5 ⌋ = ⌊ 10801 16 ⌋ = 675 ≡ 0 ( mod 5 ) , {\displaystyle \left\lfloor {\frac {10801}{4^{7-5}}}\right\rfloor =\left\lfloor {\frac {10801}{16}}\right\rfloor =675\equiv 0{\pmod {5}},} ⌊ 10801 4 7 − 6 ⌋ = ⌊ 10801 4 ⌋ = 2700 ≡ 0 ( mod 6 ) , {\displaystyle \left\lfloor {\frac {10801}{4^{7-6}}}\right\rfloor =\left\lfloor {\frac {10801}{4}}\right\rfloor =2700\equiv 0{\pmod {6}},} ⌊ 10801 4 7 − 7 ⌋ = ⌊ 10801 1 ⌋ = 10801 ≡ 0 ( mod 7 ) . {\displaystyle \left\lfloor {\frac {10801}{4^{7-7}}}\right\rfloor =\left\lfloor {\frac {10801}{1}}\right\rfloor =10801\equiv 0{\pmod {7}}.} For any given baseb {\displaystyle b} , there are only a finite number of polydivisible numbers.
Maximum polydivisible number [ edit ] The following table lists maximum polydivisible numbers for some basesb , whereA−Z represent digit values 10 to 35.
Estimate forFb (n ) and Σ(b )[ edit ] Graph of number ofn {\displaystyle n} -digit polydivisible numbers in base 10F 10 ( n ) {\displaystyle F_{10}(n)} vs estimate ofF 10 ( n ) {\displaystyle F_{10}(n)} Letn {\displaystyle n} be the number of digits. The functionF b ( n ) {\displaystyle F_{b}(n)} determines the number of polydivisible numbers that hasn {\displaystyle n} digits in baseb {\displaystyle b} , and the functionΣ ( b ) {\displaystyle \Sigma (b)} is the total number of polydivisible numbers in baseb {\displaystyle b} .
Ifk {\displaystyle k} is a polydivisible number in baseb {\displaystyle b} withn − 1 {\displaystyle n-1} digits, then it can be extended to create a polydivisible number withn {\displaystyle n} digits if there is a number betweenb k {\displaystyle bk} andb ( k + 1 ) − 1 {\displaystyle b(k+1)-1} that is divisible byn {\displaystyle n} . Ifn {\displaystyle n} is less or equal tob {\displaystyle b} , then it is always possible to extend ann − 1 {\displaystyle n-1} digit polydivisible number to ann {\displaystyle n} -digit polydivisible number in this way, and indeed there may be more than one possible extension. Ifn {\displaystyle n} is greater thanb {\displaystyle b} , it is not always possible to extend a polydivisible number in this way, and asn {\displaystyle n} becomes larger, the chances of being able to extend a given polydivisible number become smaller. On average, each polydivisible number withn − 1 {\displaystyle n-1} digits can be extended to a polydivisible number withn {\displaystyle n} digits inb n {\displaystyle {\frac {b}{n}}} different ways. This leads to the following estimate forF b ( n ) {\displaystyle F_{b}(n)} :
F b ( n ) ≈ ( b − 1 ) b n − 1 n ! . {\displaystyle F_{b}(n)\approx (b-1){\frac {b^{n-1}}{n!}}.} Summing over all values of n, this estimate suggests that the total number of polydivisible numbers will be approximately
Σ ( b ) ≈ b − 1 b ( e b − 1 ) {\displaystyle \Sigma (b)\approx {\frac {b-1}{b}}(e^{b}-1)} All numbers are represented in baseb {\displaystyle b} , using A−Z to represent digit values 10 to 35.
Lengthn F2 (n ) Est. of F2 (n ) Polydivisible numbers 1 1 1 1 2 1 1 10
Lengthn F3 (n ) Est. of F3 (n ) Polydivisible numbers 1 2 2 1, 2 2 3 3 11, 20, 22 3 3 3 110, 200, 220 4 3 2 1100, 2002, 2200 5 2 1 11002, 20022 6 2 1 110020, 200220 7 0 0 ∅ {\displaystyle \varnothing }
Lengthn F4 (n ) Est. of F4 (n ) Polydivisible numbers 1 3 3 1, 2, 3 2 6 6 10, 12, 20, 22, 30, 32 3 8 8 102, 120, 123, 201, 222, 300, 303, 321 4 8 8 1020, 1200, 1230, 2010, 2220, 3000, 3030, 3210 5 7 6 10202, 12001, 12303, 20102, 22203, 30002, 32103 6 4 4 120012, 123030, 222030, 321030 7 1 2 2220301 8 0 1 ∅ {\displaystyle \varnothing }
The polydivisible numbers in base 5 are
1, 2, 3, 4, 11, 13, 20, 22, 24, 31, 33, 40, 42, 44, 110, 113, 132, 201, 204, 220, 223, 242, 311, 314, 330, 333, 402, 421, 424, 440, 443, 1102, 1133, 1322, 2011, 2042, 2200, 2204, 2231, 2420, 2424, 3113, 3140, 3144, 3302, 3333, 4022, 4211, 4242, 4400, 4404, 4431, 11020, 11330, 13220, 20110, 20420, 22000, 22040, 22310, 24200, 24240, 31130, 31400, 31440, 33020, 33330, 40220, 42110, 42420, 44000, 44040, 44310, 110204, 113300, 132204, 201102, 204204, 220000, 220402, 223102, 242000, 242402, 311300, 314000, 314402, 330204, 333300, 402204, 421102, 424204, 440000, 440402, 443102, 1133000, 1322043, 2011021, 2042040, 2204020, 2420003, 2424024, 3113002, 3140000, 3144021, 4022042, 4211020, 4431024, 11330000, 13220431, 20110211, 20420404, 24200031, 31400004, 31440211, 40220422, 42110202, 44310242, 132204314, 201102110, 242000311, 314000044, 402204220, 443102421, 1322043140, 2011021100, 3140000440, 4022042200 The smallest base 5 polydivisible numbers withn digits are
1, 11, 110, 1102, 11020, 110204, 1133000, 11330000, 132204314, 1322043140, none... The largest base 5 polydivisible numbers withn digits are
4, 44, 443, 4431, 44310, 443102, 4431024, 44310242, 443102421, 4022042200, none... The number of base 5 polydivisible numbers withn digits are
4, 10, 17, 21, 21, 21, 13, 10, 6, 4, 0, 0, 0... Lengthn F5 (n ) Est. of F5 (n ) 1 4 4 2 10 10 3 17 17 4 21 21 5 21 21 6 21 17 7 13 12 8 10 8 9 6 4 10 4 2
The polydivisible numbers in base 10 are
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 102, 105, 108, 120, 123, 126, 129, 141, 144, 147, 162, 165, 168, 180, 183, 186, 189, 201, 204, 207, 222, 225, 228, 243, 246, 249, 261, 264, 267, 282, 285, 288... (sequenceA144688 in theOEIS ) The smallest base 10 polydivisible numbers withn digits are
1, 10, 102, 1020, 10200, 102000, 1020005, 10200056, 102000564, 1020005640, 10200056405, 102006162060, 1020061620604, 10200616206046, 102006162060465, 1020061620604656, 10200616206046568, 108054801036000018, 1080548010360000180, 10805480103600001800, ... (sequenceA214437 in theOEIS ) The largest base 10 polydivisible numbers withn digits are
9, 98, 987, 9876, 98765, 987654, 9876545, 98765456, 987654564, 9876545640, 98765456405, 987606963096, 9876069630960, 98760696309604, 987606963096045, 9876062430364208, 98485872309636009, 984450645096105672, 9812523240364656789, 96685896604836004260, ... (sequenceA225608 in theOEIS ) The number of base 10 polydivisible numbers withn digits are
9, 45, 150, 375, 750, 1200, 1713, 2227, 2492, 2492, 2225, 2041, 1575, 1132, 770, 571, 335, 180, 90, 44, 18, 12, 6, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... (sequenceA143671 in theOEIS ) Lengthn F10 (n )[ 5] Est. of F10 (n ) 1 9 9 2 45 45 3 150 150 4 375 375 5 750 750 6 1200 1250 7 1713 1786 8 2227 2232 9 2492 2480 10 2492 2480 11 2225 2255 12 2041 1879 13 1575 1445 14 1132 1032 15 770 688 16 571 430 17 335 253 18 180 141 19 90 74 20 44 37 21 18 17 22 12 8 23 6 3 24 3 1 25 1 1
Programming example [ edit ] The example below searches for polydivisible numbers inPython .
def find_polydivisible ( base : int ) -> list [ int ]: """Find polydivisible number.""" numbers = [] previous = [ i for i in range ( 1 , base )] new = [] digits = 2 while not previous == []: numbers . append ( previous ) for n in previous : for j in range ( 0 , base ): number = n * base + j if number % digits == 0 : new . append ( number ) previous = new new = [] digits = digits + 1 return numbers Polydivisible numbers represent a generalization of the following well-known[ 2] problem inrecreational mathematics :
Arrange the digits 1 to 9 in order so that the first two digits form a multiple of 2, the first three digits form a multiple of 3, the first four digits form a multiple of 4 etc. and finally the entire number is a multiple of 9. The solution to the problem is a nine-digit polydivisible number with the additional condition that it contains the digits 1 to 9 exactly once each. There are 2,492 nine-digit polydivisible numbers, but the only one that satisfies the additional condition is
381 654 729 [ 6] Other problems involving polydivisible numbers include:
Finding polydivisible numbers with additional restrictions on the digits - for example, the longest polydivisible number that only uses even digits is 48 000 688 208 466 084 040 Findingpalindromic polydivisible numbers - for example, the longest palindromic polydivisible number is 30 000 600 003 A common, trivial extension of the aforementioned example is to arrange the digits 0 to 9 to make a 10 digit number in the same way, the result is 3816547290. This is apandigital polydivisible number. ^ De, Moloy,MATH'S BELIEVE IT OR NOT ^a b c Parker, Matt (2014),"Can you digit?" ,Things to Make and Do in the Fourth Dimension , Particular Books, pp. 7– 8,ISBN 9780374275655 – via Google Books ^ Wells, David (1986),The Penguin Dictionary of Curious and Interesting Numbers , Penguin Books, p. 197,ISBN 9780140261493 – via Google Books ^ Lines, Malcolm (1986),"How Do These Series End?" ,A Number for your Thoughts , Taylor and Francis Group, p. 90,ISBN 9780852744956 ^ (sequenceA143671 in theOEIS ) ^ Lanier, Susie,Nine Digit Number
Possessing a specific set of other numbers
Expressible via specific sums
Divisibility-based sets of integers
Overview Factorization forms Constrained divisor sums With many divisors Aliquot sequence -relatedBase -dependentOther sets