Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Plasmin

From Wikipedia, the free encyclopedia
(Redirected fromPlasminogen)
Enzyme in human blood that degrades clots and other proteins
PLG
Available structures
PDBOrtholog search:PDBeRCSB
List of PDB id codes

1B2I,1BML,1BUI,1CEA,1CEB,1DDJ,1HPJ,1HPK,1I5K,1KI0,1KRN,1L4D,1L4Z,1PK4,1PKR,1PMK,1QRZ,1RJX,2DOH,2DOI,2KNF,2L0S,2PK4,3UIR,4A5T,4CIK,4DCB,4DUR,4DUU,5HPG

Identifiers
AliasesPLG, plasminogen, plasmin, HAE4
External IDsOMIM:173350;MGI:97620;HomoloGene:55452;GeneCards:PLG;OMA:PLG - orthologs
Gene location (Human)
Chromosome 6 (human)
Chr.Chromosome 6 (human)[1]
Chromosome 6 (human)
Genomic location for PLG
Genomic location for PLG
Band6q26Start160,702,238bp[1]
End160,754,097bp[1]
Gene location (Mouse)
Chromosome 17 (mouse)
Chr.Chromosome 17 (mouse)[2]
Chromosome 17 (mouse)
Genomic location for PLG
Genomic location for PLG
Band17 A1|17 8.5 cMStart12,597,495bp[2]
End12,638,272bp[2]
RNA expression pattern
Bgee
HumanMouse (ortholog)
Top expressed in
  • right lobe of liver

  • kidney tubule

  • metanephric glomerulus

  • human kidney

  • Descending thoracic aorta

  • ascending aorta

  • testicle

  • tibial nerve

  • right coronary artery

  • gonad
Top expressed in
  • left lobe of liver

  • gallbladder

  • human fetus

  • yolk sac

  • fetal liver hematopoietic progenitor cell

  • sexually immature organism

  • abdominal wall

  • primitive streak

  • embryo

  • thoracic diaphragm
More reference expression data
BioGPS




More reference expression data
Gene ontology
Molecular function
Cellular component
Biological process
Sources:Amigo /QuickGO
Orthologs
SpeciesHumanMouse
Entrez

5340

18815

Ensembl

ENSG00000122194

ENSMUSG00000059481

UniProt

P00747

P20918

RefSeq (mRNA)

NM_001168338
NM_000301

NM_008877

RefSeq (protein)

NP_000292
NP_001161810

NP_032903

Location (UCSC)Chr 6: 160.7 – 160.75 MbChr 17: 12.6 – 12.64 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Plasmin is an importantenzyme (EC3.4.21.7) present inblood that degrades manyblood plasma proteins, includingfibrinclots. The degradation of fibrin is termedfibrinolysis. In humans, the plasmin protein (in thezymogen form ofplasminogen) is encoded by thePLGgene.[5]

Function

[edit]
Fibrinolysis (simplified). Blue arrows denote stimulation, and red arrows inhibition.

Plasmin is aserine protease that acts to dissolvefibrin blood clots. Apart from fibrinolysis, plasminproteolyses proteins in various other systems: It activatescollagenases, some mediators of thecomplement system, and weakens the wall of theGraafian follicle, leading toovulation. Plasmin is also integrally involved in inflammation.[6] It cleavesfibrin,fibronectin,thrombospondin, laminin, andvon Willebrand factor. Plasmin, liketrypsin, belongs to the family ofserine proteases.

Plasmin is released as azymogen calledplasminogen (PLG) from the liver into the systemic circulation. Two major glycoforms of plasminogen are present in humans - type I plasminogen contains two glycosylation moieties (N-linked to N289 and O-linked to T346), whereas type II plasminogen contains only a single O-linked sugar (O-linked to T346). Type II plasminogen is preferentially recruited to the cell surface over the type I glycoform. Conversely, type I plasminogen appears more readily recruited to blood clots.

In circulation, plasminogen adopts a closed, activation-resistant conformation. Upon binding to clots, or to the cell surface, plasminogen adopts an open form that can be converted into active plasmin by a variety ofenzymes, includingtissue plasminogen activator (tPA),urokinase plasminogen activator (uPA),kallikrein, andfactor XII (Hageman factor). Fibrin is a cofactor for plasminogen activation by tissue plasminogen activator.Urokinase plasminogen activator receptor (uPAR) is a cofactor for plasminogen activation by urokinase plasminogen activator. The conversion of plasminogen to plasmin involves the cleavage of the peptide bond between Arg-561 and Val-562.[5][7][8][9]

Plasmin cleavage producesangiostatin.

Mechanism of plasminogen activation

[edit]

Full length plasminogen comprises seven domains. In addition to a C-terminal chymotrypsin-like serine protease domain, plasminogen contains anN-terminal Pan Apple domain (PAp) together with fiveKringle domains (KR1-5). The Pan-Apple domain contains important determinants for maintaining plasminogen in the closed form, and the kringle domains are responsible for binding to lysine residues present in receptors and substrates.

The X-ray crystal structure of closed plasminogen reveals that the PAp and SP domains maintain the closed conformation through interactions made throughout the kringle array .[9] Chloride ions further bridge the PAp / KR4 and SP / KR2 interfaces, explaining the physiological role of serum chloride in stabilizing the closed conformer. The structural studies also reveal that differences in glycosylation alter the position of KR3. These data help explain the functional differences between the type I and type II plasminogen glycoforms.[citation needed]

In closed plasminogen, access to the activation bond (R561/V562) targeted for cleavage by tPA and uPA is blocked through the position of the KR3/KR4 linker sequence and the O-linked sugar on T346. The position of KR3 may also hinder access to theactivation loop. The Inter-domain interactions also block all kringle ligand-binding sites apart from that of KR-1, suggesting that the latter domain governs pro-enzyme recruitment to targets. Analysis of an intermediate plasminogen structure suggests that plasminogen conformational change to the open form is initiated through KR-5 transiently peeling away from the PAp domain. These movements expose the KR5 lysine-binding site to potential binding partners, and suggest a requirement for spatially distinct lysine residues in eliciting plasminogen recruitment and conformational change respectively.[9]

Mechanism of plasmin inactivation

[edit]
icon
This sectiondoes notcite anysources. Please helpimprove this section byadding citations to reliable sources. Unsourced material may be challenged andremoved.(November 2016) (Learn how and when to remove this message)

Plasmin is inactivated by proteins such asα2-macroglobulin andα2-antiplasmin.[10] The mechanism of plasmin inactivation involves the cleavage of an α2-macroglobulin at the bait region (a segment of the aM that is particularly susceptible to proteolytic cleavage) by plasmin. This initiates a conformational change such that the α2-macroglobulin collapses about the plasmin. In the resulting α2-macroglobulin-plasmin complex, the active site of plasmin issterically shielded, thus substantially decreasing the plasmin's access to protein substrates. Two additional events occur as a consequence of bait region cleavage, namely (i) a h-cysteinyl-g-glutamyl thiol ester of the α2-macroglobulin becomes highly reactive and (ii) a major conformational change exposes a conservedCOOH-terminal receptor binding domain. The exposure of this receptor binding domain allows the α2-macroglobulin protease complex to bind to clearance receptors and be removed from circulation.

Pathology

[edit]

Plasmin deficiency may lead tothrombosis, as the clots are not adequately degraded. Plasminogen deficiency in mice leads to defective liver repair,[11] defective wound healing, reproductive abnormalities.[12][13]

In humans, a rare disorder calledplasminogen deficiency type I (Online Mendelian Inheritance in Man (OMIM):217090) is caused by mutations of thePLG gene and is often manifested byligneous conjunctivitis.[14]

A raremissense mutation within the kringle 3 domain of plasminogen, resulting in a novel type of dysplasminogenemia, represents the molecular basis of a subtype of hereditary angioedema with normal C1-inhibitor;[15] the mutation creates a new lysine-binding site within kringle 3 and alters the glycosylation of plasminogen.[15] The mutant plasminogen protein has been shown to be a highly efficient kininogenase that directly releases bradykinin from high- and low-molecular-weight kininogen.[16]

Interactions

[edit]

Plasmin has been shown tointeract withThrombospondin 1,[17][18]Alpha 2-antiplasmin[19][20] andIGFBP3.[21] Moreover, plasmin induces the generation ofbradykinin in mice and humans throughhigh-molecular-weight kininogen cleavage.[22]

References

[edit]
  1. ^abcGRCh38: Ensembl release 89: ENSG00000122194Ensembl, May 2017
  2. ^abcGRCm38: Ensembl release 89: ENSMUSG00000059481Ensembl, May 2017
  3. ^"Human PubMed Reference:".National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^"Mouse PubMed Reference:".National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ab"Entrez Gene: plasminogen".
  6. ^Atsev S, Tomov N (December 2020)."Using antifibrinolytics to tackle neuroinflammation".Neural Regeneration Research.15 (12):2203–2206.doi:10.4103/1673-5374.284979.PMC 7749481.PMID 32594031.
  7. ^Miyata T, Iwanaga S, Sakata Y, Aoki N (October 1982)."Plasminogen Tochigi: inactive plasmin resulting from replacement of alanine-600 by threonine in the active site".Proceedings of the National Academy of Sciences of the United States of America.79 (20):6132–6136.Bibcode:1982PNAS...79.6132M.doi:10.1073/pnas.79.20.6132.PMC 347073.PMID 6216475.
  8. ^Forsgren M, Råden B, Israelsson M, Larsson K, Hedén LO (March 1987)."Molecular cloning and characterization of a full-length cDNA clone for human plasminogen".FEBS Letters.213 (2):254–260.Bibcode:1987FEBSL.213..254F.doi:10.1016/0014-5793(87)81501-6.PMID 3030813.S2CID 9075872.
  9. ^abcLaw RH, Caradoc-Davies T, Cowieson N, Horvath AJ, Quek AJ, Encarnacao JA, et al. (March 2012)."The X-ray crystal structure of full-length human plasminogen".Cell Reports.1 (3):185–190.doi:10.1016/j.celrep.2012.02.012.PMID 22832192.
  10. ^Wu G, Quek AJ, Caradoc-Davies TT, Ekkel SM, Mazzitelli B, Whisstock JC, Law RH (April 2019). "Structural studies of plasmin inhibition".Biochemical Society Transactions.47 (2):541–557.doi:10.1042/bst20180211.PMID 30837322.S2CID 73463150.
  11. ^Bezerra JA, Bugge TH, Melin-Aldana H, Sabla G, Kombrinck KW, Witte DP, Degen JL (December 1999)."Plasminogen deficiency leads to impaired remodeling after a toxic injury to the liver".Proceedings of the National Academy of Sciences of the United States of America.96 (26):15143–15148.Bibcode:1999PNAS...9615143B.doi:10.1073/pnas.96.26.15143.PMC 24787.PMID 10611352.
  12. ^Romer J, Bugge TH, Pyke C, Lund LR, Flick MJ, Degen JL, Dano K (March 1996). "Impaired wound healing in mice with a disrupted plasminogen gene".Nature Medicine.2 (3):287–292.doi:10.1038/nm0396-287.PMID 8612226.S2CID 29981847.
  13. ^Ploplis VA, Carmeliet P, Vazirzadeh S, Van Vlaenderen I, Moons L, Plow EF, Collen D (November 1995). "Effects of disruption of the plasminogen gene on thrombosis, growth, and health in mice".Circulation.92 (9):2585–2593.doi:10.1161/01.cir.92.9.2585.PMID 7586361.
  14. ^Schuster V, Hügle B, Tefs K (December 2007)."Plasminogen deficiency".Journal of Thrombosis and Haemostasis.5 (12):2315–2322.doi:10.1111/j.1538-7836.2007.02776.x.PMID 17900274.
  15. ^abDewald G (March 2018). "A missense mutation in the plasminogen gene, within the plasminogen kringle 3 domain, in hereditary angioedema with normal C1 inhibitor".Biochemical and Biophysical Research Communications.498 (1):193–198.Bibcode:2018BBRC..498..193D.doi:10.1016/j.bbrc.2017.12.060.PMID 29548426.
  16. ^Dickeson SK, Kumar S, Sun MF, Mohammed BM, Phillips DR, Whisstock JC, et al. (May 2022)."A mechanism for hereditary angioedema caused by a lysine 311-to-glutamic acid substitution in plasminogen".Blood.139 (18):2816–2829.doi:10.1182/blood.2021012945.PMC 9074402.PMID 35100351.
  17. ^Silverstein RL, Leung LL, Harpel PC, Nachman RL (November 1984)."Complex formation of platelet thrombospondin with plasminogen. Modulation of activation by tissue activator".The Journal of Clinical Investigation.74 (5):1625–1633.doi:10.1172/JCI111578.PMC 425339.PMID 6438154.
  18. ^DePoli P, Bacon-Baguley T, Kendra-Franczak S, Cederholm MT, Walz DA (March 1989)."Thrombospondin interaction with plasminogen. Evidence for binding to a specific region of the kringle structure of plasminogen".Blood.73 (4):976–982.doi:10.1182/blood.V73.4.976.976.PMID 2522013.
  19. ^Wiman B, Collen D (September 1979)."On the mechanism of the reaction between human alpha 2-antiplasmin and plasmin".The Journal of Biological Chemistry.254 (18):9291–9297.doi:10.1016/S0021-9258(19)86843-6.PMID 158022.
  20. ^Shieh BH, Travis J (May 1987)."The reactive site of human alpha 2-antiplasmin".The Journal of Biological Chemistry.262 (13):6055–6059.doi:10.1016/S0021-9258(18)45536-6.PMID 2437112.
  21. ^Campbell PG, Durham SK, Suwanichkul A, Hayes JD, Powell DR (August 1998). "Plasminogen binds the heparin-binding domain of insulin-like growth factor-binding protein-3".The American Journal of Physiology.275 (2):E321 –E331.doi:10.1152/ajpendo.1998.275.2.E321.PMID 9688635.
  22. ^Marcos-Contreras OA, Martinez de Lizarrondo S, Bardou I, Orset C, Pruvost M, Anfray A, et al. (November 2016)."Hyperfibrinolysis increases blood-brain barrier permeability by a plasmin- and bradykinin-dependent mechanism".Blood.128 (20):2423–2434.doi:10.1182/blood-2016-03-705384.PMID 27531677.

Further reading

[edit]

External links

[edit]

This article incorporates text from theUnited States National Library of Medicine, which is in thepublic domain.


PDB gallery
  • 1b2i: KRINGLE 2 DOMAIN OF HUMAN PLASMINOGEN: NMR SOLUTION STRUCTURE OF TRANS-4-AMINOMETHYLCYCLOHEXANE-1-CARBOXYLIC ACID (AMCHA) COMPLEX
    1b2i: KRINGLE 2 DOMAIN OF HUMAN PLASMINOGEN: NMR SOLUTION STRUCTURE OF TRANS-4-AMINOMETHYLCYCLOHEXANE-1-CARBOXYLIC ACID (AMCHA) COMPLEX
  • 1bml: COMPLEX OF THE CATALYTIC DOMAIN OF HUMAN PLASMIN AND STREPTOKINASE
    1bml: COMPLEX OF THE CATALYTIC DOMAIN OF HUMAN PLASMIN AND STREPTOKINASE
  • 1bui: STRUCTURE OF THE TERNARY MICROPLASMIN-STAPHYLOKINASE-MICROPLASMIN COMPLEX: A PROTEINASE-COFACTOR-SUBSTRATE COMPLEX IN ACTION.
    1bui: STRUCTURE OF THE TERNARY MICROPLASMIN-STAPHYLOKINASE-MICROPLASMIN COMPLEX: A PROTEINASE-COFACTOR-SUBSTRATE COMPLEX IN ACTION.
  • 1cea: THE STRUCTURE OF THE NON-COVALENT COMPLEX OF RECOMBINANT KRINGLE 1 DOMAIN OF HUMAN PLASMINOGEN WITH EACA (EPSILON-AMINOCAPROIC ACID)
    1cea: THE STRUCTURE OF THE NON-COVALENT COMPLEX OF RECOMBINANT KRINGLE 1 DOMAIN OF HUMAN PLASMINOGEN WITH EACA (EPSILON-AMINOCAPROIC ACID)
  • 1ceb: THE STRUCTURE OF THE NON-COVALENT COMPLEX OF RECOMBINANT KRINGLE 1 DOMAIN OF HUMAN PLASMINOGEN WITH AMCHA (TRANS-4-AMINOMETHYLCYCLOHEXANE-1-CARBOXYLIC ACID)
    1ceb: THE STRUCTURE OF THE NON-COVALENT COMPLEX OF RECOMBINANT KRINGLE 1 DOMAIN OF HUMAN PLASMINOGEN WITH AMCHA (TRANS-4-AMINOMETHYLCYCLOHEXANE-1-CARBOXYLIC ACID)
  • 1ddj: CRYSTAL STRUCTURE OF HUMAN PLASMINOGEN CATALYTIC DOMAIN
    1ddj: CRYSTAL STRUCTURE OF HUMAN PLASMINOGEN CATALYTIC DOMAIN
  • 1hpj: SOLUTION NMR STRUCTURE OF THE HUMAN PLASMINOGEN KRINGLE 1 DOMAIN COMPLEXED WITH 6-AMINOHEXANOIC ACID AT PH 5.3, 310K, DERIVED FROM RANDOMLY GENERATED STRUCTURES USING SIMULATED ANNEALING, 12 STRUCTURES
    1hpj: SOLUTION NMR STRUCTURE OF THE HUMAN PLASMINOGEN KRINGLE 1 DOMAIN COMPLEXED WITH 6-AMINOHEXANOIC ACID AT PH 5.3, 310K, DERIVED FROM RANDOMLY GENERATED STRUCTURES USING SIMULATED ANNEALING, 12 STRUCTURES
  • 1hpk: SOLUTION NMR STRUCTURE OF THE HUMAN PLASMINOGEN KRINGLE 1 DOMAIN COMPLEXED WITH 6-AMINOHEXANOIC ACID AT PH 5.3, 310K, DERIVED FROM RANDOMLY GENERATED STRUCTURES USING SIMULATED ANNEALING, MINIMIZED AVERAGE STRUCTURE
    1hpk: SOLUTION NMR STRUCTURE OF THE HUMAN PLASMINOGEN KRINGLE 1 DOMAIN COMPLEXED WITH 6-AMINOHEXANOIC ACID AT PH 5.3, 310K, DERIVED FROM RANDOMLY GENERATED STRUCTURES USING SIMULATED ANNEALING, MINIMIZED AVERAGE STRUCTURE
  • 1i5k: STRUCTURE AND BINDING DETERMINANTS OF THE RECOMBINANT KRINGLE-2 DOMAIN OF HUMAN PLASMINOGEN TO AN INTERNAL PEPTIDE FROM A GROUP A STREPTOCOCCAL SURFACE PROTEIN
    1i5k: STRUCTURE AND BINDING DETERMINANTS OF THE RECOMBINANT KRINGLE-2 DOMAIN OF HUMAN PLASMINOGEN TO AN INTERNAL PEPTIDE FROM A GROUP A STREPTOCOCCAL SURFACE PROTEIN
  • 1ki0: The X-ray Structure of Human Angiostatin
    1ki0: The X-ray Structure of Human Angiostatin
  • 1krn: STRUCTURE OF KRINGLE 4 AT 4C TEMPERATURE AND 1.67 ANGSTROMS RESOLUTION
    1krn: STRUCTURE OF KRINGLE 4 AT 4C TEMPERATURE AND 1.67 ANGSTROMS RESOLUTION
  • 1l4d: CRYSTAL STRUCTURE OF MICROPLASMINOGEN-STREPTOKINASE ALPHA DOMAIN COMPLEX
    1l4d: CRYSTAL STRUCTURE OF MICROPLASMINOGEN-STREPTOKINASE ALPHA DOMAIN COMPLEX
  • 1l4z: X-RAY CRYSTAL STRUCTURE OF THE COMPLEX OF MICROPLASMINOGEN WITH ALPHA DOMAIN OF STREPTOKINASE IN THE PRESENCE CADMIUM IONS
    1l4z: X-RAY CRYSTAL STRUCTURE OF THE COMPLEX OF MICROPLASMINOGEN WITH ALPHA DOMAIN OF STREPTOKINASE IN THE PRESENCE CADMIUM IONS
  • 1pk4: CRYSTAL AND MOLECULAR STRUCTURE OF HUMAN PLASMINOGEN KRINGLE 4 REFINED AT 1.9-ANGSTROMS RESOLUTION
    1pk4: CRYSTAL AND MOLECULAR STRUCTURE OF HUMAN PLASMINOGEN KRINGLE 4 REFINED AT 1.9-ANGSTROMS RESOLUTION
  • 1pkr: THE STRUCTURE OF RECOMBINANT PLASMINOGEN KRINGLE 1 AND THE FIBRIN BINDING SITE
    1pkr: THE STRUCTURE OF RECOMBINANT PLASMINOGEN KRINGLE 1 AND THE FIBRIN BINDING SITE
  • 1pmk: KRINGLE-KRINGLE INTERACTIONS IN MULTIMER KRINGLE STRUCTURES
    1pmk: KRINGLE-KRINGLE INTERACTIONS IN MULTIMER KRINGLE STRUCTURES
  • 1qrz: CATALYTIC DOMAIN OF PLASMINOGEN
    1qrz: CATALYTIC DOMAIN OF PLASMINOGEN
  • 1rjx: Human PLASMINOGEN CATALYTIC DOMAIN, K698M MUTANT
    1rjx: Human PLASMINOGEN CATALYTIC DOMAIN, K698M MUTANT
  • 2doh: The X-ray crystallographic structure of the angiogenesis inhibitor, angiostatin, bound a to a peptide from the group A streptococcal surface protein PAM
    2doh: The X-ray crystallographic structure of the angiogenesis inhibitor, angiostatin, bound a to a peptide from the group A streptococcal surface protein PAM
  • 2doi: The X-ray crystallographic structure of the angiogenesis inhibitor, angiostatin, bound to a peptide from the group A streptococcus protein PAM
    2doi: The X-ray crystallographic structure of the angiogenesis inhibitor, angiostatin, bound to a peptide from the group A streptococcus protein PAM
  • 2pk4: THE REFINED STRUCTURE OF THE EPSILON-AMINOCAPROIC ACID COMPLEX OF HUMAN PLASMINOGEN KRINGLE
    2pk4: THE REFINED STRUCTURE OF THE EPSILON-AMINOCAPROIC ACID COMPLEX OF HUMAN PLASMINOGEN KRINGLE
  • 5hpg: STRUCTURE AND LIGAND DETERMINANTS OF THE RECOMBINANT KRINGLE 5 DOMAIN OF HUMAN PLASMINOGEN
    5hpg: STRUCTURE AND LIGAND DETERMINANTS OF THE RECOMBINANT KRINGLE 5 DOMAIN OF HUMAN PLASMINOGEN
Serumglobulins
Alpha globulins
serpins:
carrier proteins:
other:
Beta globulins
carrier proteins:
other:
Gamma globulin
Other
Other globulins
Albumins
Egg white
Serum albumin
Other
Coagulation factors
Primary hemostasis
(platelet activation)
Intrinsic pathway
(contact activation)
Extrinsic pathway
(tissue factor)
Common pathway
Anticoagulant factors
Fibrinolytic factors
Coagulation markers
Platelet activation
Thrombin generation
Fibrin generation
Fibrinolysis
Digestive enzymes
Coagulation
Complement system
Otherimmune system
Venombin
Other
Activity
Regulation
Classification
Kinetics
Types
Portal:
Retrieved from "https://en.wikipedia.org/w/index.php?title=Plasmin&oldid=1301330993"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp