Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Placentalia

From Wikipedia, the free encyclopedia
(Redirected fromPlacental)
Infraclass of mammals in the clade Eutheria
"Placental" redirects here. For the organ interfacing between a placental mammalian mother and a fetus, seePlacenta.

Placentals
Temporal range:Maastrichtian-present66.3–0 Ma[1] Possible earlierCretaceous records
Placentals from different orders.
Scientific classificationEdit this classification
Domain:Eukaryota
Kingdom:Animalia
Phylum:Chordata
Class:Mammalia
Clade:Eutheria
Infraclass:Placentalia
Owen, 1837
Subgroups
Synonyms
list of synonyms:
  • Euplacentalia(Koenigswald, 2016)[4]
  • Eutheria(Huxley, 1880)[5]
  • Monodelphia(Gill, 1872)[6]
  • Placentaria(Fleming, 1822)[7]
  • Placentata(Turnbull, 1971)[8]

Placental mammals (infraclassPlacentalia/plæsənˈtliə/) are one of the three extant subdivisions of the classMammalia, the other two beingMonotremata andMarsupialia. Placentalia contains the vast majority of extant mammals, which are partly distinguished from monotremes and marsupials in that thefetus is carried in theuterus of its mother to a relatively late stage of development. The name is something of a misnomer, considering that marsupials also nourish their fetuses via aplacenta,[9] though for a relatively briefer period, giving birth to less-developed young, which are then nurtured for a period inside the mother'spouch. Placentalia represents the only living group withinEutheria, which contains all mammals that are more closely related to placentals than they are to marsupials.

Anatomical features

[edit]

Placental mammals are anatomically distinguished from other mammals by:

Subdivisions

[edit]

Analysis of molecular data led to rapid changes in assessments of the phylogeny of placental orders at the close of the 20th century. A novel phylogeny and classification of placental orders appeared with Waddell, Hasegawa and Okada in 1999.[16] "Jumping genes"-typeretroposon presence/absence patterns have provided corroboration of phylogenetic relationships inferred from molecular sequences.[17] It is now widely accepted that there are three major subdivisions or lineages of placental mammals:Boreoeutheria,Xenarthra, andAfrotheria. All of these diverged from common ancestors.

2022 studies of Bertrand, O. C. and Sarah L. Shelley have identifiedpalaeoryctids andtaeniodonts as basal placental mammal clades.[2][3]

The 19 living orders of Placentalia in the three groups are:[18]

The exact relationships among these three lineages is currently a subject of debate, and four different hypotheses have been proposed with respect to which group isbasal or diverged first from other placentals. These hypotheses areAtlantogenata (basal Boreoeutheria),Epitheria (basal Xenarthra),Exafroplacentalia (basal Afrotheria) and a hypothesis supporting a near simultaneous divergence.[19] Estimates for the divergence times among these three placental groups mostly range from 105 to 120 million years ago (MYA), depending on the type of DNA, whether it is translated, and the phylogenetic method (e.g.nuclear ormitochondrial),[20][21] and varying interpretations ofpaleogeographic data.[19] In addition, a strict molecular clock does not hold, so it is necessary to assume models of how evolutionary rates change along lineages. These assumptions alone can make substantial differences to the relative ages of different mammal groups estimated with genomic data.[22]

Placentalia

Cladogram and classification based on Amrine-Madsen, H.et al. (2003)[23] and Asher, R. J.et al. (2009)[24] Compare with Waddell, Hasegawa and Okada (1999)[16] and Waddell et al. (2001).[20]

Genomics

[edit]

As of 2020[update], thegenome has been sequenced for at least one species in each extant placental order and in 83% of families (105 of 127 extant placental families).[25]

Seelist of sequenced animal genomes.

Evolutionary history

[edit]

True placental mammals (thecrown group including all modern placentals) arose from stem-group members of the cladeEutheria, which had existed since at least theMiddle Jurassic period, about 170 mya. These early eutherians were small, nocturnal insect eaters, with adaptations for life in trees.[13]

True placentals may have originated in theLate Cretaceous around 90 mya, but the earliest undisputed fossils are dated to theCretaceous–Paleogene boundary (K-Pg boundary). The genusProtungulatum is sometimes placed as a stem-ungulate,[26] with probably the earliest known speciesP. coombsi from the strata within theHell Creek Formation specifically dated to at least 300,000 years before the K-Pg boundary.[1] The genusPurgatorius, sometimes considered a stem-primate, appears no more than 300,000 years after the K-Pg boundary.[27] One study has recovered both genera to be closely related and as stem-eutherians outside modern placental mammals,[28] but others have recoveredProtungulatum as apan-euungulate based on phylogenetic analysis and inner ear anatomy different from non-placentals.[29][30] The rapid appearance of placentals after the mass extinction at the end of theCretaceous suggests that the group had already originated and undergone an initial diversification in the Late Cretaceous, as suggested bymolecular clocks.[31] The lineages leading to Xenarthra and Afrotheria probably originated around 90 mya, and Boreoeutheria underwent an initial diversification around 70-80 mya,[31] producing the lineages that eventually would lead to modern primates, rodents,insectivores,artiodactyls, andcarnivorans.

However, modern members of the placental orders originated in thePaleogene around 66 to 23 mya, following the Cretaceous–Paleogene extinction event. The evolution of crown orders such modern primates, rodents, and carnivores appears to be part of an adaptive radiation[32] that took place as mammals quickly evolved to take advantage of ecologicalniches that were left open when most dinosaurs and other animals disappeared following theChicxulub asteroid impact. As they occupied new niches, mammals rapidly increased in body size, and began to take over the large herbivore and large carnivore niches that had been left open by the decimation of the dinosaurs (and perhaps more relevantly competingsynapsids[33]). Mammals also exploited niches that the non-avian dinosaurs had never touched: for example,bats evolved flight and echolocation, allowing them to be highly effective nocturnal, aerial insectivores; and whales first occupied freshwater lakes and rivers and then moved into the oceans. Primates, meanwhile, acquired specialized grasping hands and feet which allowed them to grasp branches, and large eyes with keener vision which allowed them to forage in the dark.

The evolution of land placentals followed different pathways on different continents since they cannot easily cross large bodies of water. An exception is smaller placentals such as rodents and primates, who leftLaurasia and colonized Africa and then South America viarafting.

In Africa, theAfrotheria underwent a major adaptive radiation, which led to elephants,elephant shrews,tenrecs,golden moles,aardvarks, andmanatees. In South America a similar event occurred, with radiation of the Xenarthra, which led to modernsloths,anteaters, andarmadillos, as well as the extinctground sloths andglyptodonts. Expansion in Laurasia was dominated by Boreoeutheria, which includes primates and rodents,insectivores, carnivores,perissodactyls andartiodactyls. These groups expanded beyond a single continent when land bridges formed linking Africa to Eurasia and South America to North America.

A study on eutherian diversity suggests that placental diversity was constrained during thePaleocene, whilemultituberculate mammals diversified; afterwards, multituberculates decline and placentals explode in diversity.[33]

Notes

[edit]
  1. ^GeneraAlveugena,Ambilestes andProcerberus are the immediate outgroups to order Taeniodonta, with genusAlveugena classified as a sister taxon to this order.
  2. ^Exceptional adult placentals that retain a cloaca aregolden moles,tenrecs,beavers, and someshrews.

References

[edit]
  1. ^abArchibald, J. David; Zhang, Yue; Harper, Tony; Cifelli, Richard L. (May 6, 2011)."Protungulatum, confirmed Cretaceous occurrence of an otherwise Paleocene eutherian (placental?) mammal"(PDF).Journal of Mammalian Evolution.18 (3):153–161.doi:10.1007/s10914-011-9162-1.S2CID 16724836. Archived fromthe original(PDF) on March 3, 2016. RetrievedApril 28, 2013.
  2. ^abcBertrand, O. C.; Shelley, S. L.; Williamson, T. E.; Wible, J. R.; Chester, S. G. B.; Flynn, J. J.; Holbrook, L. T.; Lyson, T. R.; Meng, J.; Miller, I. M.; Püschel, H. P.; Smith, T.; Spaulding, M.; Tseng, Z. J.; Brusatte, S. L. (2022)."Brawn before brains in placental mammals after the end-Cretaceous extinction".Science.376 (6588):80–85.Bibcode:2022Sci...376...80B.doi:10.1126/science.abl5584.hdl:20.500.11820/d7fb8c6e-886e-4c1d-9977-0cd6406fda20.PMID 35357913.
  3. ^abSarah L. Shelley (2022.) "The phylogeny of Paleocene mammals and the evolution of Placentalia", in"The Society of Vertebrate Paleontology 82nd annual meeting"
  4. ^Wighart von Koenigswald (2016.)"Specialized wear facets and late ontogeny in mammalian dentitions", Historical Biology, 30(1–2), 7–29.
  5. ^T. H. Huxley (1880.)"On the application of the laws of evolution to the arrangement of the Vertebrata, and more particularly of the Mammalia." Proceedings of the Zoological Society, London 43:649-662
  6. ^Gill, T. (1872.)"Arrangement of the Families of Mammals." Smithsonian Misc. Coll. 11 (230), [i]-vi, 1-98.
  7. ^Fleming, J. (1822.)"The philosophy of zoology: Or a general view of the structure, functions and classification of animals." Edinburgh Vol. 2: 1-618
  8. ^Turnbull, W. D. (1971.) "The trinity therians: Their bearing on evolution in marsupials and other therians." In: ed. A. A. Dahlberg"Dental morphology and evolution", Chicago: University of Chicago Press, pp. 151–179.
  9. ^Renfree, M. B. (March 2010). "Review: Marsupials: placental mammals with a difference".Placenta. 31 Supplement: S21–6.doi:10.1016/j.placenta.2009.12.023.PMID 20079531.
  10. ^Weil, A. (April 2002). "Mammalian evolution: Upwards and onwards".Nature.416 (6883):798–799.Bibcode:2002Natur.416..798W.doi:10.1038/416798a.PMID 11976661.S2CID 4332049.
  11. ^abReilly, S. M. & White, T. D. (January 2003). "Hypaxial Motor Patterns and the Function of Epipubic Bones in Primitive Mammals".Science.299 (5605):400–402.Bibcode:2003Sci...299..400R.doi:10.1126/science.1074905.PMID 12532019.S2CID 41470665.
  12. ^Novacek, M. J., Rougier, G. W, Wible, J. R., McKenna, M. C, Dashzeveg, D. and Horovitz, I. (October 1997). "Epipubic bones in eutherian mammals from the Late Cretaceous of Mongolia".Nature.389 (6650):483–486.Bibcode:1997Natur.389..483N.doi:10.1038/39020.PMID 9333234.S2CID 205026882.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  13. ^abcJi, Q., Luo, Z-X., Yuan, C-X., Wible, J. R., Zhang, J-P. and Georgi, J. A. (April 2002). "The earliest known eutherian mammal".Nature.416 (6883):816–822.Bibcode:2002Natur.416..816J.doi:10.1038/416816a.PMID 11976675.S2CID 4330626.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  14. ^Marvalee H. Wake (15 September 1992).Hyman's Comparative Vertebrate Anatomy. University of Chicago Press. p. 583.ISBN 978-0-226-87013-7. Retrieved6 May 2013.
  15. ^Velut, S; Destrieux, C; Kakou, M (May 1998). "[Morphologic anatomy of the corpus callosum]".Neuro-Chirurgie.44 (1 Suppl):17–30.PMID 9757322.
  16. ^abWaddell, P. J.; Okada, N.; Hasegawa, M. (1999). "Towards Resolving the Interordinal Relationships of Placental Mammals".Systematic Biology.48 (1):1–5.doi:10.1093/sysbio/48.1.1.
  17. ^Kriegs, Jan Ole; Churakov, Gennady; Kiefmann, Martin; Jordan, Ursula; Brosius, Jürgen; Schmitz, Jürgen (2006)."Retroposed Elements as Archives for the Evolutionary History of Placental Mammals".PLOS Biology.4 (4): e91.doi:10.1371/journal.pbio.0040091.PMC 1395351.PMID 16515367.
  18. ^Archibald JD, Averianov AO, Ekdale EG (November 2001)."Late Cretaceous relatives of rabbits, rodents, and other extant eutherian mammals".Nature.414 (6859):62–5.Bibcode:2001Natur.414...62A.doi:10.1038/35102048.PMID 11689942.
  19. ^abNishihara, H.; Maruyama, S.; Okada, N. (2009)."Retroposon analysis and recent geological data suggest near-simultaneous divergence of the three superorders of mammals".Proceedings of the National Academy of Sciences.106 (13):5235–5240.Bibcode:2009PNAS..106.5235N.doi:10.1073/pnas.0809297106.PMC 2655268.PMID 19286970.
  20. ^abWaddell, P. J.; Kishino, H.; Ota, R. (2001). "A phylogenetic foundation for comparative mammalian genomics".Genome Informatics Series.12:141–154.PMID 11791233.
  21. ^Springer, Mark S.; Murphy, William J.; Eizirik, Eduardo; O'Brien, Stephen J. (2003)."Placental mammal diversification and the Cretaceous–Tertiary boundary".Proceedings of the National Academy of Sciences.100 (3):1056–1061.Bibcode:2003PNAS..100.1056S.doi:10.1073/pnas.0334222100.PMC 298725.PMID 12552136.
  22. ^Kitazoe, Y.; Kishino, H.; Waddell, P. J.; Nakajima, T.; Okabayashi, T.; Watabe, T.; Okuhara, Y. (2007)."Robust time estimation reconciles views of the antiquity of placental mammals".PLOS ONE.2 (e384):1–11.Bibcode:2007PLoSO...2..384K.doi:10.1371/journal.pone.0000384.PMC 1849890.PMID 17440620.
  23. ^Amrine-Madsen, H.; Koepfli, K. P.; Wayne, R. K.; Springer, M. S. (2003). "A new phylogenetic marker, apoliprotein B, provides compelling evidence for eutherian relationships".Molecular Phylogenetics and Evolution.28 (2):225–240.Bibcode:2003MolPE..28..225A.doi:10.1016/s1055-7903(03)00118-0.PMID 12878460.
  24. ^Asher, R. J.; Bennett, N.; Lehmann, T. (2009)."The new framework for understanding placental mammal evolution".BioEssays.31 (8):853–864.doi:10.1002/bies.200900053.PMID 19582725.
  25. ^Zoonomia Consortium (2020)A comparative genomics multitool for scientific discovery and conservation.Nature 587, 240–245
  26. ^O'Leary, Maureen A.; Bloch, Jonathan I.; Flynn, John J.; Gaudin, Timothy J.; Giallombardo, Andres; Giannini, Norberto P.; Goldberg, Suzann L.; Kraatz, Brian P.; Luo, Zhe-Xi; Meng, Jin; Ni, Michael J.; Novacek, Fernando A.; Perini, Zachary S.; Randall, Guillermo; Rougier, Eric J.; Sargis, Mary T.; Silcox, Nancy b.; Simmons, Micelle; Spaulding, Paul M.; Velazco, Marcelo; Weksler, John r.; Wible, Andrea L.; Cirranello, A. L. (8 February 2013). "The Placental Mammal Ancestor and the Post–K-Pg Radiation of Placentals".Science.339 (6120):662–667.Bibcode:2013Sci...339..662O.doi:10.1126/science.1229237.hdl:11336/7302.PMID 23393258.S2CID 206544776.
  27. ^Fox, R. C.; Scott, C. S. (2011). "A new, early Puercan (earliest Paleocene) species of Purgatorius (Plesiadapiformes, Primates) from Saskatchewan, Canada".Journal of Paleontology.85 (3):537–548.Bibcode:2011JPal...85..537F.doi:10.1666/10-059.1.S2CID 131519722.
  28. ^Halliday, Thomas J. D. (2015)."Resolving the relationships of Paleocene placental mammals".Biological Reviews.92 (1):521–550.doi:10.1111/brv.12242.PMC 6849585.PMID 28075073.
  29. ^de Muizon, Christian; Billet, Guillaume; Argot, Christine; Ladevèze, Sandrine; Goussard, Florent (2015)."Alcidedorbignya inopinata, a basal pantodont (Placentalia, Mammalia) from the early Palaeocene of Bolivia: anatomy, phylogeny and palaeobiology".Geodiversitas.37 (4): 397.doi:10.5252/g2015n4a1.ISSN 1280-9659.S2CID 131556174.
  30. ^Orliac, M. J.; o'Leary, M. A. (2016)."The inner ear ofProtungulatum (Pan-Euungulata, Mammalia)".Journal of Mammalian Evolution.23 (4):337–352.doi:10.1007/s10914-016-9327-z.S2CID 133815599.
  31. ^abdos Reis, M.; Inoue, J.; Hasegawa, M.; Asher, R. J.; Donoghue, P. C. J.; Yang, Z. (2012)."Phylogenomic datasets provide both precision and accuracy in estimating the timescale of placental mammal phylogeny".Proceedings of the Royal Society B.279 (1742):3491–3500.doi:10.1098/rspb.2012.0683.PMC 3396900.PMID 22628470.
  32. ^Alroy, J (1999)."The fossil record of North American Mammals: evidence for a Palaeocene evolutionary radiation".Systematic Biology.48 (1):107–118.doi:10.1080/106351599260472.PMID 12078635.
  33. ^abBrocklehurst, Neil; Panciroli, Elsa; Benevento, Gemma Louise; Benson, Roger B.J. (July 2021)."Mammaliaform extinctions as a driver of the morphological radiation of Cenozoic mammals".Current Biology.31 (13): 2955–2963.e4.Bibcode:2021CBio...31E2955B.doi:10.1016/j.cub.2021.04.044.PMID 34004143.S2CID 234782605.

External links

[edit]
The WikibookDichotomous Key has a page on the topic of:Placentalia
Synapsida
Cynodontia
Mammalia
Eutheria
    • see below↓
Adapisoriculidae
Asioryctitheria
Cimolestidae
Didymoconidae
Horolodectidae
Leptictida
Gypsonictopidae
Pseudorhyncocyonidae
Leptictidae
Palaeoryctidae
Pantolesta
Paroxyclaenidae
Pantolestidae
Taeniodonta
Conoryctidae
Onychodectidae
Stylinodontidae
Tillodontia
Zalambdalestidae
Zhelestidae
Pantodonta
Placentalia
Leptictidium nasutum

Palaeosinopa didelphoidesWortmania otariidens

Zalambdalestes lechei
Extantmammal orders
Yinotheria
Australosphenida
Theria
Metatheria
(Marsupial inclusive)
Ameridelphia
Australidelphia
Eutheria
(Placental inclusive)
Atlantogenata
Xenarthra
Afrotheria
Boreoeutheria
Laurasiatheria
Euarchontoglires
Placentalia
Authority control databases: NationalEdit this at Wikidata
Retrieved from "https://en.wikipedia.org/w/index.php?title=Placentalia&oldid=1281950936"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp