Mathematical group occurring in algebraic geometry and the theory of complex manifolds
Inmathematics , thePicard group of aringed space X , denoted by Pic(X ), is the group ofisomorphism classes ofinvertible sheaves (orline bundles ) onX , with thegroup operation beingtensor product . This construction is a global version of the construction of the divisor class group, orideal class group , and is much used inalgebraic geometry and the theory ofcomplex manifolds .
Alternatively, the Picard group can be defined as thesheaf cohomology group
H 1 ( X , O X ∗ ) . {\displaystyle H^{1}(X,{\mathcal {O}}_{X}^{*}).\,} For integralschemes the Picard group is isomorphic to the class group ofCartier divisors . For complex manifolds theexponential sheaf sequence gives basic information on the Picard group.
The name is in honour ofÉmile Picard 's theories, in particular of divisors onalgebraic surfaces .
The Picard group of thespectrum of aDedekind domain is itsideal class group . The invertible sheaves onprojective space P n (k ) fork afield , are thetwisting sheaves O ( m ) , {\displaystyle {\mathcal {O}}(m),\,} so the Picard group ofP n (k ) is isomorphic toZ . The Picard group of the affine line with two origins overk is isomorphic toZ . The Picard group of then {\displaystyle n} -dimensionalcomplex affine space :Pic ( C n ) = 0 {\displaystyle \operatorname {Pic} (\mathbb {C} ^{n})=0} , indeed theexponential sequence yields the following long exact sequence in cohomology⋯ → H 1 ( C n , Z _ ) → H 1 ( C n , O C n ) → H 1 ( C n , O C n ⋆ ) → H 2 ( C n , Z _ ) → ⋯ {\displaystyle \dots \to H^{1}(\mathbb {C} ^{n},{\underline {\mathbb {Z} }})\to H^{1}(\mathbb {C} ^{n},{\mathcal {O}}_{\mathbb {C} ^{n}})\to H^{1}(\mathbb {C} ^{n},{\mathcal {O}}_{\mathbb {C} ^{n}}^{\star })\to H^{2}(\mathbb {C} ^{n},{\underline {\mathbb {Z} }})\to \cdots } and sinceH k ( C n , Z _ ) ≃ H s i n g k ( C n ; Z ) {\displaystyle H^{k}(\mathbb {C} ^{n},{\underline {\mathbb {Z} }})\simeq H_{\scriptscriptstyle {\rm {sing}}}^{k}(\mathbb {C} ^{n};\mathbb {Z} )} [ 1] we haveH 1 ( C n , Z _ ) ≃ H 2 ( C n , Z _ ) ≃ 0 {\displaystyle H^{1}(\mathbb {C} ^{n},{\underline {\mathbb {Z} }})\simeq H^{2}(\mathbb {C} ^{n},{\underline {\mathbb {Z} }})\simeq 0} becauseC n {\displaystyle \mathbb {C} ^{n}} is contractible, thenH 1 ( C n , O C n ) ≃ H 1 ( C n , O C n ⋆ ) {\displaystyle H^{1}(\mathbb {C} ^{n},{\mathcal {O}}_{\mathbb {C} ^{n}})\simeq H^{1}(\mathbb {C} ^{n},{\mathcal {O}}_{\mathbb {C} ^{n}}^{\star })} and we can apply theDolbeault isomorphism to calculateH 1 ( C n , O C n ) ≃ H 1 ( C n , Ω C n 0 ) ≃ H ∂ ¯ 0 , 1 ( C n ) = 0 {\displaystyle H^{1}(\mathbb {C} ^{n},{\mathcal {O}}_{\mathbb {C} ^{n}})\simeq H^{1}(\mathbb {C} ^{n},\Omega _{\mathbb {C} ^{n}}^{0})\simeq H_{\bar {\partial }}^{0,1}(\mathbb {C} ^{n})=0} by theDolbeault–Grothendieck lemma . The construction of a scheme structure on (therepresentable functor version of) the Picard group, thePicard scheme , is an important step in algebraic geometry, in particular in theduality theory of abelian varieties . It was constructed byGrothendieck (1962) , and also described byMumford (1966) andKleiman (2005) .
In the cases of most importance to classical algebraic geometry, for anon-singular complete variety V over afield ofcharacteristic zero, theconnected component of the identity in the Picard scheme is anabelian variety called thePicard variety and denoted Pic0 (V ). The dual of the Picard variety is theAlbanese variety , and in the particular case whereV is a curve, the Picard variety isnaturally isomorphic to theJacobian variety ofV . For fields of positive characteristic however,Igusa constructed an example of a smooth projective surfaceS with Pic0 (S ) non-reduced, and hence not anabelian variety .
The quotient Pic(V )/Pic0 (V ) is afinitely-generated abelian group denoted NS(V ), theNéron–Severi group ofV . In other words, the Picard group fits into anexact sequence
1 → P i c 0 ( V ) → P i c ( V ) → N S ( V ) → 1. {\displaystyle 1\to \mathrm {Pic} ^{0}(V)\to \mathrm {Pic} (V)\to \mathrm {NS} (V)\to 1.\,} The fact that the rank of NS(V ) is finite isFrancesco Severi 'stheorem of the base ; the rank is thePicard number ofV , often denoted ρ(V ). Geometrically NS(V ) describes thealgebraic equivalence classes ofdivisors onV ; that is, using a stronger, non-linearequivalence relation in place oflinear equivalence of divisors , the classification becomes amenable to discrete invariants. Algebraic equivalence is closely related tonumerical equivalence , an essentially topological classification byintersection numbers .
Relative Picard scheme [ edit ] Letf :X →S be amorphism of schemes . Therelative Picard functor (orrelative Picard scheme if it is a scheme) is given by:[ 2] for anyS -schemeT ,
Pic X / S ( T ) = Pic ( X T ) / f T ∗ ( Pic ( T ) ) {\displaystyle \operatorname {Pic} _{X/S}(T)=\operatorname {Pic} (X_{T})/f_{T}^{*}(\operatorname {Pic} (T))} wheref T : X T → T {\displaystyle f_{T}:X_{T}\to T} is the base change off andf T * is the pullback.
We say anL inPic X / S ( T ) {\displaystyle \operatorname {Pic} _{X/S}(T)} has degreer if for any geometric points →T the pullbacks ∗ L {\displaystyle s^{*}L} ofL alongs has degreer as an invertible sheaf over the fiberX s (when the degree is defined for the Picard group ofX s .)
Grothendieck, A. (1962),V. Les schémas de Picard. Théorèmes d'existence , Séminaire Bourbaki, t. 14: année 1961/62, exposés 223-240, no. 7, Talk no. 232, pp. 143– 161Grothendieck, A. (1962),VI. Les schémas de Picard. Propriétés générales , Séminaire Bourbaki, t. 14: année 1961/62, exposés 223-240, no. 7, Talk no. 236, pp. 221– 243Hartshorne, Robin (1977),Algebraic Geometry , Berlin, New York:Springer-Verlag ,ISBN 978-0-387-90244-9 ,MR 0463157 ,OCLC 13348052 Igusa, Jun-Ichi (1955), "On some problems in abstract algebraic geometry",Proc. Natl. Acad. Sci. U.S.A. ,41 (11):964– 967,Bibcode :1955PNAS...41..964I ,doi :10.1073/pnas.41.11.964 ,PMC 534315 ,PMID 16589782 Kleiman, Steven L. (2005), "The Picard scheme",Fundamental algebraic geometry , Math. Surveys Monogr., vol. 123, Providence, R.I.:American Mathematical Society , pp. 235– 321,arXiv :math/0504020 ,Bibcode :2005math......4020K ,MR 2223410 Mumford, David (1966),Lectures on Curves on an Algebraic Surface , Annals of Mathematics Studies, vol. 59,Princeton University Press ,ISBN 978-0-691-07993-6 ,MR 0209285 ,OCLC 171541070 Mumford, David (1970),Abelian varieties , Oxford:Oxford University Press ,ISBN 978-0-19-560528-0 ,OCLC 138290