Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Phycobiliprotein

From Wikipedia, the free encyclopedia
icon
This articleneeds additional citations forverification. Please helpimprove this article byadding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Phycobiliprotein" – news ·newspapers ·books ·scholar ·JSTOR
(December 2009) (Learn how and when to remove this message)
This article mayrequirecleanup to meet Wikipedia'squality standards. The specific problem is:external links in main text/table. Please helpimprove this article if you can.(October 2024) (Learn how and when to remove this message)

Phycobiliproteins are water-solubleproteins present incyanobacteria and certain algae (rhodophytes,cryptomonads,glaucocystophytes). They capture light energy, which is then passed on tochlorophylls duringphotosynthesis. Phycobiliproteins are formed of a complex between proteins andcovalently boundphycobilins that act aschromophores (the light-capturing part).[1] They are most important constituents of thephycobilisomes.

Phycobilisome structure

Major phycobiliproteins

[edit]
PhycobiliproteinMW (kDa)Ex (nm) / Em (nm)Quantum yieldMolarExtinction Coefficient (M−1cm−1)CommentImage
R-Phycoerythrin (R-PE)240498.546.566 nm / 576 nm0,841.53 106Can be excited by Kr/Ar laser
Applications for R-Phycoerythrin

Many applications and instruments were developed specifically for R-phycoerythrin. It is commonly used in immunoassays such as FACS, flow cytometry, multimer/tetramer applications.

Structural Characteristics

R-phycoerythrin is also produced by certain red algae. The protein is made up of at least three different subunits and varies according to the species of algae that produces it. The subunit structure of the most common R-PE is (αβ)6γ. The α subunit has two phycoerythrobilins (PEB), the β subunit has 2 or 3 PEBs and one phycourobilin (PUB), while the different gamma subunits are reported to have 3 PEB and 2 PUB (γ1) or 1 or 2 PEB and 1 PUB (γ2).

(Phycobiliprotein overview information)[dead link]

The crystal structure of R-phycoerythrin fromred algaeGracilaria chilensis (PDB ID: 1EYX[2][3][4]) - basicoligomer (αβγ)2 (so called asymmetric unit). It containsphycocyanobilin,biliverdine IX alpha,phycourobilin,N-methyl asparagine,SO42−. One fragment of γ chain is red, second one white because it is not considered asalpha helix despite identical aminoacid sequence.
B-Phycoerythrin (B-PE)240546.566 nm / 576 nm0,98(545 nm) 2.4 106

(563 nm) 2.33 106

Applications for B-Phycoerythrin

Because of its high quantum yield, B-PE is considered the world's brightest fluorophore. It is compatible with commonly available lasers and gives exceptional results in flow cytometry, Luminex and immunofluorescent staining. B-PE is also less "sticky" than common synthetic fluorophores and therefore gives less background interference.

Structural Characteristics

B-phycoerythrin (B-PE) is produced by certain red algae such asRhodella sp. The specific spectral characteristics are a result of the composition of its subunits. B-PE is composed of at least three subunits and sometimes more. The chromophore distribution is as follows: α subunit with 2 phycoerythrobilins (PEB), β subunit with 3 PEB, and the γ subunit with 2 PEB and 2 phycourobilins (PUB). The quaternary structure is reported as (αβ)6γ.

(Phycobiliprotein overview information)[dead link]

The crystal structure of B-phycoerythrin fromred algaePorphyridium cruentum (PDB ID: 3V57[5][6][4]). The asymmetric unit (αβ)2 on the left and assumed biological molecule (αβ)3. It containsphycoerythrobilin,N-methyl asparagine andSO42−.
C-Phycocyanin (CPC)232620 nm / 642 nm0,811.54 106Accepts the fluorescence for R-PE; Its red fluorescence can be transmitted to Allophycocyanin
Allophycocyanin (APC)105651 nm / 662 nm0,687.3 105Excited by He/Ne laser; double labeling with Sulfo-Rhodamine 101 or any other equivalent fluorochrome.
Applications for Allophycocyanin

Many applications and instruments were developed specifically for allophycocyanin. It is commonly used in immunoassays such as flow cytometry and high-throughput screening. It is also a common acceptor dye for FRET assays.

Structural Characteristics

Allophycocyanin can be isolated from various species of red or blue-green algae, each producing slightly different forms of the molecule. It is composed of two different subunits (α and β) in which each subunit has one phycocyanobilin (PCB) chromophore. The subunit structure for APC has been determined as (αβ)3.

(Phycobiliprotein overview information)[dead link]

Allophycocyanin dodekamer + 12 phycocyanobilin (green),Gloeobacter violaceus
↑ =FluoProbesPhycoBiliProteins data

Characteristics

[edit]

Phycobiliproteins demonstrate superior fluorescent properties compared to small organic fluorophores, especially when high sensitivity or multicolor detection required :

  • Broad and high absorption of light suits many light sources
  • Very intense emission of light: 10-20 times brighter than small organic fluorophores
  • Relative largeStokes shift gives low background, and allows multicolor detections.
  • Excitation and emission spectra do not overlap compared to conventional organic dyes.
  • Can be used in tandem (simultaneous use byFRET) with conventional chromophores (i.e. PE and FITC, or APC and SR101 with the same light source).
  • Longer fluorescence retention period.
  • High water solubility

Applications

[edit]

Phycobiliproteins allow very high detection sensitivity, and can be used in various fluorescence based techniquesfluorimetric microplate assaysArchived 2018-03-18 at theWayback Machine,[7][8][9] FISH and multicolor detection.

They are under development for use inartificial photosynthesis, limited by the relatively low conversion efficiency of 4-5%.[10]

References

[edit]
  1. ^Aizpuru, Aitor; González-Sánchez, Armando (2024-07-20)."Traditional and new trend strategies to enhance pigment contents in microalgae".World Journal of Microbiology and Biotechnology.40 (9): 272.doi:10.1007/s11274-024-04070-3.ISSN 1573-0972.PMC 11271434.PMID 39030303.
  2. ^Bank, RCSB Protein Data."RCSB PDB - 1EYX: CRYSTAL STRUCTURE OF R-PHYCOERYTHRIN AT 2.2 ANGSTROMS".www.rcsb.org. Retrieved2024-10-21.
  3. ^Contreras-Martel C, Martinez-Oyanedel J, Bunster M, Legrand P, Piras C, Vernede X, Fontecilla-Camps JC (January 2001). "Crystallization and 2.2 A resolution structure of R-phycoerythrin from Gracilaria chilensis: a case of perfect hemihedral twinning".Acta Crystallographica D.57 (Pt 1):52–60.doi:10.1107/S0907444900015274.PMID 11134927.S2CID 216930. PDB ID: 1EYX.
  4. ^abImage created withRasTop (Molecular Visualization Software).
  5. ^Bank, RCSB Protein Data."RCSB PDB - 3V57: Crystal Structure of the B-phycoerythrin from the red algae Porphyridium Cruentum at pH8".www.rcsb.org. Retrieved2024-10-21.
  6. ^Camara-Artigas A, Bacarizo J, Andujar-Sanchez M, Ortiz-Salmeron E, Mesa-Valle C, Cuadri C, Martin-Garcia JM, Martinez-Rodriguez S, Mazzuca-Sobczuk T, Ibañez MJ, Allen JP (October 2012). "pH-dependent structural conformations of B-phycoerythrin from Porphyridium cruentum".The FEBS Journal.279 (19):3680–3691.doi:10.1111/j.1742-4658.2012.08730.x.PMID 22863205.S2CID 31253970. PDB ID: 3V57.
  7. ^"MicroPlate Detection comparison between SureLight P-3L, other fluorophores and enzymatic detection Table 1: Comparison of honeypot with other detection methods".PeerJ Computer Science. 2010.doi:10.7717/peerj-cs.350/table-1.
  8. ^"Flow Cytometry"(PDF). Archived fromthe original(PDF) on 2018-03-18. Retrieved2014-06-07.
  9. ^Telford, William G; Moss, Mark W; Morseman, John P; Allnutt, F.C.Thomas (August 2001)."Cyanobacterial stabilized phycobilisomes as fluorochromes for extracellular antigen detection by flow cytometry".Journal of Immunological Methods.254 (1–2):13–30.doi:10.1016/s0022-1759(01)00367-2.ISSN 0022-1759.PMID 11406150.
  10. ^Lavars, Nick (2021-10-19)."Encasing algae triples the efficiency of artificial photosynthesis".New Atlas. Retrieved2021-10-24.
Processes
Structures
Types
Retrieved from "https://en.wikipedia.org/w/index.php?title=Phycobiliprotein&oldid=1337915112"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp