Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Parametric model

From Wikipedia, the free encyclopedia
This articleprovides insufficient context for those unfamiliar with the subject. Please helpimprove the article byproviding more context for the reader.(November 2022) (Learn how and when to remove this message)
Type of statistical model
This article is about statistics. For mathematical and computer representation of objects, seeSolid modeling.

Instatistics, aparametric model orparametric family orfinite-dimensional model is a particular class ofstatistical models. Specifically, a parametric model is a family ofprobability distributions that has a finite number of parameters.

Definition

[edit]
This section includes alist of references,related reading, orexternal links,but its sources remain unclear because it lacksinline citations. Please helpimprove this section byintroducing more precise citations.(May 2012) (Learn how and when to remove this message)

Astatistical model is a collection ofprobability distributions on somesample space. We assume that the collection,𝒫, is indexed by some setΘ. The setΘ is called theparameter set or, more commonly, theparameter space. For eachθ ∈ Θ, letFθ denote the corresponding member of the collection; soFθ is acumulative distribution function. Then a statistical model can be written as

P={Fθ | θΘ}.{\displaystyle {\mathcal {P}}={\big \{}F_{\theta }\ {\big |}\ \theta \in \Theta {\big \}}.}

The model is aparametric model ifΘ ⊆ ℝk for some positive integerk.

When the model consists of absolutely continuous distributions, it is often specified in terms of correspondingprobability density functions:

P={fθ | θΘ}.{\displaystyle {\mathcal {P}}={\big \{}f_{\theta }\ {\big |}\ \theta \in \Theta {\big \}}.}

Examples

[edit]
  • ThePoisson family of distributions is parametrized by a single numberλ > 0:
P={ pλ(j)=λjj!eλ, j=0,1,2,3, |λ>0 },{\displaystyle {\mathcal {P}}={\Big \{}\ p_{\lambda }(j)={\tfrac {\lambda ^{j}}{j!}}e^{-\lambda },\ j=0,1,2,3,\dots \ {\Big |}\;\;\lambda >0\ {\Big \}},}

wherepλ is theprobability mass function. This family is anexponential family.

  • Thenormal family is parametrized byθ = (μ,σ), whereμ ∈ ℝ is a location parameter andσ > 0 is a scale parameter:
P={ fθ(x)=12πσexp((xμ)22σ2) |μR,σ>0 }.{\displaystyle {\mathcal {P}}={\Big \{}\ f_{\theta }(x)={\tfrac {1}{{\sqrt {2\pi }}\sigma }}\exp \left(-{\tfrac {(x-\mu )^{2}}{2\sigma ^{2}}}\right)\ {\Big |}\;\;\mu \in \mathbb {R} ,\sigma >0\ {\Big \}}.}

Thisparametrized family is both anexponential family and alocation-scale family.

P={ fθ(x)=βλ(xμλ)β1exp((xμλ)β)1{x>μ} |λ>0,β>0,μR },{\displaystyle {\mathcal {P}}={\Big \{}\ f_{\theta }(x)={\tfrac {\beta }{\lambda }}\left({\tfrac {x-\mu }{\lambda }}\right)^{\beta -1}\!\exp \!{\big (}\!-\!{\big (}{\tfrac {x-\mu }{\lambda }}{\big )}^{\beta }{\big )}\,\mathbf {1} _{\{x>\mu \}}\ {\Big |}\;\;\lambda >0,\,\beta >0,\,\mu \in \mathbb {R} \ {\Big \}},}

whereβ{\displaystyle \beta } is theshape parameter,λ{\displaystyle \lambda } is thescale parameter andμ{\displaystyle \mu } is thelocation parameter.

  • Thebinomial model is parametrized byθ = (n,p), wheren is a non-negative integer andp is a probability (i.e.p ≥ 0 andp ≤ 1):
P={ pθ(k)=n!k!(nk)!pk(1p)nk, k=0,1,2,,n |nZ0,p0p1}.{\displaystyle {\mathcal {P}}={\Big \{}\ p_{\theta }(k)={\tfrac {n!}{k!(n-k)!}}\,p^{k}(1-p)^{n-k},\ k=0,1,2,\dots ,n\ {\Big |}\;\;n\in \mathbb {Z} _{\geq 0},\,p\geq 0\land p\leq 1{\Big \}}.}

This example illustrates the definition for a model with some discrete parameters.

General remarks

[edit]

A parametric model is calledidentifiable if the mappingθPθ is invertible, i.e. there are no two different parameter valuesθ1 andθ2 such thatPθ1 =Pθ2.

Comparisons with other classes of models

[edit]

Parametric models are contrasted with thesemi-parametric,semi-nonparametric, andnon-parametric models, all of which consist of an infinite set of "parameters" for description. The distinction between these four classes is as follows:[citation needed]

  • in a "parametric" model all the parameters are in finite-dimensional parameter spaces;
  • a model is "non-parametric" if all the parameters are in infinite-dimensional parameter spaces;
  • a "semi-parametric" model contains finite-dimensional parameters of interest and infinite-dimensionalnuisance parameters;
  • a "semi-nonparametric" model has both finite-dimensional and infinite-dimensional unknown parameters of interest.

Some statisticians believe that the concepts "parametric", "non-parametric", and "semi-parametric" are ambiguous.[1] It can also be noted that the set of all probability measures hascardinality ofcontinuum, and therefore it is possible to parametrize any model at all by a single number in (0,1) interval.[2] This difficulty can be avoided by considering only "smooth" parametric models.

See also

[edit]

Notes

[edit]
  1. ^Le Cam & Yang 2000, §7.4
  2. ^Bickel et al. 1998, p. 2

Bibliography

[edit]
  • Bickel, Peter J.; Doksum, Kjell A. (2001),Mathematical Statistics: Basic and selected topics, vol. 1 (Second (updated printing 2007) ed.),Prentice-Hall
  • Bickel, Peter J.; Klaassen, Chris A. J.; Ritov, Ya’acov; Wellner, Jon A. (1998),Efficient and Adaptive Estimation for Semiparametric Models, Springer
  • Davison, A. C. (2003),Statistical Models,Cambridge University Press
  • Le Cam, Lucien;Yang, Grace Lo (2000),Asymptotics in Statistics: Some basic concepts (2nd ed.), Springer
  • Lehmann, Erich L.;Casella, George (1998),Theory of Point Estimation (2nd ed.), Springer
  • Liese, Friedrich; Miescke, Klaus-J. (2008),Statistical Decision Theory: Estimation, testing, and selection, Springer
  • Pfanzagl, Johann; with the assistance of R. Hamböker (1994),Parametric Statistical Theory,Walter de Gruyter,MR 1291393
Retrieved from "https://en.wikipedia.org/w/index.php?title=Parametric_model&oldid=1314016812"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp