Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Parabolic cylindrical coordinates

From Wikipedia, the free encyclopedia
Three-dimensional orthogonal coordinate system
Coordinate surfaces of parabolic cylindrical coordinates. The red parabolic cylinder corresponds to σ=2, whereas the yellow parabolic cylinder corresponds to τ=1. The blue plane corresponds toz=2. These surfaces intersect at the pointP (shown as a black sphere), which hasCartesian coordinates roughly (2, −1.5, 2).

Inmathematics,parabolic cylindrical coordinates are a three-dimensionalorthogonalcoordinate system that results from projecting the two-dimensionalparabolic coordinate system in theperpendicularz{\displaystyle z}-direction. Hence, thecoordinate surfaces areconfocalparabolic cylinders. Parabolic cylindrical coordinates have found many applications, e.g., thepotential theory of edges.

Basic definition

[edit]
Parabolic coordinate system showing curves of constant σ and τ the horizontal and vertical axes are the x and y coordinates respectively. These coordinates are projected along the z-axis, and so this diagram will hold for any value of the z coordinate.

The parabolic cylindrical coordinates(σ,τ,z) are defined in terms of theCartesian coordinates(x,y,z) by:

x=στy=12(τ2σ2)z=z{\displaystyle {\begin{aligned}x&=\sigma \tau \\y&={\frac {1}{2}}\left(\tau ^{2}-\sigma ^{2}\right)\\z&=z\end{aligned}}}

The surfaces of constantσ form confocal parabolic cylinders

2y=x2σ2σ2{\displaystyle 2y={\frac {x^{2}}{\sigma ^{2}}}-\sigma ^{2}}

that open towards+y, whereas the surfaces of constantτ form confocal parabolic cylinders

2y=x2τ2+τ2{\displaystyle 2y=-{\frac {x^{2}}{\tau ^{2}}}+\tau ^{2}}

that open in the opposite direction, i.e., towardsy. The foci of all these parabolic cylinders are located along the line defined byx =y = 0. The radiusr has a simple formula as well

r=x2+y2=12(σ2+τ2){\displaystyle r={\sqrt {x^{2}+y^{2}}}={\frac {1}{2}}\left(\sigma ^{2}+\tau ^{2}\right)}

that proves useful in solving theHamilton–Jacobi equation in parabolic coordinates for theinverse-squarecentral force problem ofmechanics; for further details, see theLaplace–Runge–Lenz vector article.

Scale factors

[edit]

The scale factors for the parabolic cylindrical coordinatesσ andτ are:

hσ=hτ=σ2+τ2hz=1{\displaystyle {\begin{aligned}h_{\sigma }&=h_{\tau }={\sqrt {\sigma ^{2}+\tau ^{2}}}\\h_{z}&=1\end{aligned}}}

Differential elements

[edit]

The infinitesimal element of volume is

dV=hσhτhzdσdτdz=(σ2+τ2)dσdτdz{\displaystyle dV=h_{\sigma }h_{\tau }h_{z}d\sigma d\tau dz=(\sigma ^{2}+\tau ^{2})d\sigma \,d\tau \,dz}

The differential displacement is given by:

dl=σ2+τ2dσσ^+σ2+τ2dττ^+dzz^{\displaystyle d\mathbf {l} ={\sqrt {\sigma ^{2}+\tau ^{2}}}\,d\sigma \,{\boldsymbol {\hat {\sigma }}}+{\sqrt {\sigma ^{2}+\tau ^{2}}}\,d\tau \,{\boldsymbol {\hat {\tau }}}+dz\,\mathbf {\hat {z}} }

The differential normal area is given by:

dS=σ2+τ2dτdzσ^+σ2+τ2dσdzτ^+(σ2+τ2)dσdτz^{\displaystyle d\mathbf {S} ={\sqrt {\sigma ^{2}+\tau ^{2}}}\,d\tau \,dz{\boldsymbol {\hat {\sigma }}}+{\sqrt {\sigma ^{2}+\tau ^{2}}}\,d\sigma \,dz{\boldsymbol {\hat {\tau }}}+\left(\sigma ^{2}+\tau ^{2}\right)\,d\sigma \,d\tau \mathbf {\hat {z}} }

Del

[edit]

Letf be a scalar field. Thegradient is given by

f=1σ2+τ2fσσ^+1σ2+τ2fττ^+fzz^{\displaystyle \nabla f={\frac {1}{\sqrt {\sigma ^{2}+\tau ^{2}}}}{\partial f \over \partial \sigma }{\boldsymbol {\hat {\sigma }}}+{\frac {1}{\sqrt {\sigma ^{2}+\tau ^{2}}}}{\partial f \over \partial \tau }{\boldsymbol {\hat {\tau }}}+{\partial f \over \partial z}\mathbf {\hat {z}} }

TheLaplacian is given by

2f=1σ2+τ2(2fσ2+2fτ2)+2fz2{\displaystyle \nabla ^{2}f={\frac {1}{\sigma ^{2}+\tau ^{2}}}\left({\frac {\partial ^{2}f}{\partial \sigma ^{2}}}+{\frac {\partial ^{2}f}{\partial \tau ^{2}}}\right)+{\frac {\partial ^{2}f}{\partial z^{2}}}}

LetA be a vector field of the form:

A=Aσσ^+Aττ^+Azz^{\displaystyle \mathbf {A} =A_{\sigma }{\boldsymbol {\hat {\sigma }}}+A_{\tau }{\boldsymbol {\hat {\tau }}}+A_{z}\mathbf {\hat {z}} }

Thedivergence is given by

A=1σ2+τ2((σ2+τ2Aσ)σ+(σ2+τ2Aτ)τ)+Azz{\displaystyle \nabla \cdot \mathbf {A} ={\frac {1}{\sigma ^{2}+\tau ^{2}}}\left({\partial ({\sqrt {\sigma ^{2}+\tau ^{2}}}A_{\sigma }) \over \partial \sigma }+{\partial ({\sqrt {\sigma ^{2}+\tau ^{2}}}A_{\tau }) \over \partial \tau }\right)+{\partial A_{z} \over \partial z}}

Thecurl is given by

×A=(1σ2+τ2AzτAτz)σ^(1σ2+τ2AzσAσz)τ^+1σ2+τ2((σ2+τ2Aτ)σ(σ2+τ2Aσ)τ)z^{\displaystyle \nabla \times \mathbf {A} =\left({\frac {1}{\sqrt {\sigma ^{2}+\tau ^{2}}}}{\frac {\partial A_{z}}{\partial \tau }}-{\frac {\partial A_{\tau }}{\partial z}}\right){\boldsymbol {\hat {\sigma }}}-\left({\frac {1}{\sqrt {\sigma ^{2}+\tau ^{2}}}}{\frac {\partial A_{z}}{\partial \sigma }}-{\frac {\partial A_{\sigma }}{\partial z}}\right){\boldsymbol {\hat {\tau }}}+{\frac {1}{\sigma ^{2}+\tau ^{2}}}\left({\frac {\partial \left({\sqrt {\sigma ^{2}+\tau ^{2}}}A_{\tau }\right)}{\partial \sigma }}-{\frac {\partial \left({\sqrt {\sigma ^{2}+\tau ^{2}}}A_{\sigma }\right)}{\partial \tau }}\right)\mathbf {\hat {z}} }

Other differential operators can be expressed in the coordinates(σ,τ) by substituting the scale factors into the general formulae found inorthogonal coordinates.

Relationship to other coordinate systems

[edit]

Relationship tocylindrical coordinates(ρ,φ,z):

ρcosφ=στρsinφ=12(τ2σ2)z=z{\displaystyle {\begin{aligned}\rho \cos \varphi &=\sigma \tau \\\rho \sin \varphi &={\frac {1}{2}}\left(\tau ^{2}-\sigma ^{2}\right)\\z&=z\end{aligned}}}

Parabolic unit vectors expressed in terms of Cartesian unit vectors:

σ^=τx^σy^τ2+σ2τ^=σx^+τy^τ2+σ2z^=z^{\displaystyle {\begin{aligned}{\boldsymbol {\hat {\sigma }}}&={\frac {\tau {\hat {\mathbf {x} }}-\sigma {\hat {\mathbf {y} }}}{\sqrt {\tau ^{2}+\sigma ^{2}}}}\\{\boldsymbol {\hat {\tau }}}&={\frac {\sigma {\hat {\mathbf {x} }}+\tau {\hat {\mathbf {y} }}}{\sqrt {\tau ^{2}+\sigma ^{2}}}}\\\mathbf {\hat {z}} &=\mathbf {\hat {z}} \end{aligned}}}

Parabolic cylinder harmonics

[edit]

Since all of the surfaces of constantσ,τ andz areconicoids, Laplace's equation is separable in parabolic cylindrical coordinates. Using the technique of theseparation of variables, a separated solution to Laplace's equation may be written:

V=S(σ)T(τ)Z(z){\displaystyle V=S(\sigma )T(\tau )Z(z)}

and Laplace's equation, divided byV, is written:

1σ2+τ2[S¨S+T¨T]+Z¨Z=0{\displaystyle {\frac {1}{\sigma ^{2}+\tau ^{2}}}\left[{\frac {\ddot {S}}{S}}+{\frac {\ddot {T}}{T}}\right]+{\frac {\ddot {Z}}{Z}}=0}

Since theZ equation is separate from the rest, we may write

Z¨Z=m2{\displaystyle {\frac {\ddot {Z}}{Z}}=-m^{2}}

wherem is constant.Z(z) has the solution:

Zm(z)=A1eimz+A2eimz{\displaystyle Z_{m}(z)=A_{1}\,e^{imz}+A_{2}\,e^{-imz}}

Substitutingm2 forZ¨/Z{\displaystyle {\ddot {Z}}/Z}, Laplace's equation may now be written:

[S¨S+T¨T]=m2(σ2+τ2){\displaystyle \left[{\frac {\ddot {S}}{S}}+{\frac {\ddot {T}}{T}}\right]=m^{2}(\sigma ^{2}+\tau ^{2})}

We may now separate theS andT functions and introduce another constantn2 to obtain:

S¨(m2σ2+n2)S=0{\displaystyle {\ddot {S}}-(m^{2}\sigma ^{2}+n^{2})S=0}
T¨(m2τ2n2)T=0{\displaystyle {\ddot {T}}-(m^{2}\tau ^{2}-n^{2})T=0}

The solutions to these equations are theparabolic cylinder functions

Smn(σ)=A3y1(n2/2m,σ2m)+A4y2(n2/2m,σ2m){\displaystyle S_{mn}(\sigma )=A_{3}y_{1}(n^{2}/2m,\sigma {\sqrt {2m}})+A_{4}y_{2}(n^{2}/2m,\sigma {\sqrt {2m}})}
Tmn(τ)=A5y1(n2/2m,iτ2m)+A6y2(n2/2m,iτ2m){\displaystyle T_{mn}(\tau )=A_{5}y_{1}(n^{2}/2m,i\tau {\sqrt {2m}})+A_{6}y_{2}(n^{2}/2m,i\tau {\sqrt {2m}})}

The parabolic cylinder harmonics for(m,n) are now the product of the solutions. The combination will reduce the number of constants and the general solution to Laplace's equation may be written:

V(σ,τ,z)=m,nAmnSmnTmnZm{\displaystyle V(\sigma ,\tau ,z)=\sum _{m,n}A_{mn}S_{mn}T_{mn}Z_{m}}

Applications

[edit]

The classic applications of parabolic cylindrical coordinates are in solvingpartial differential equations, e.g.,Laplace's equation or theHelmholtz equation, for which such coordinates allow aseparation of variables. A typical example would be theelectric field surrounding a flat semi-infinite conducting plate.

See also

[edit]

Bibliography

[edit]
  • Morse PM,Feshbach H (1953).Methods of Theoretical Physics, Part I. New York: McGraw-Hill. p. 658.ISBN 0-07-043316-X.LCCN 52011515.{{cite book}}:ISBN / Date incompatibility (help)
  • Margenau H, Murphy GM (1956).The Mathematics of Physics and Chemistry. New York: D. van Nostrand. pp. 186–187.LCCN 55010911.
  • Korn GA,Korn TM (1961).Mathematical Handbook for Scientists and Engineers. New York: McGraw-Hill. p. 181.LCCN 59014456. ASIN B0000CKZX7.
  • Sauer R, Szabó I (1967).Mathematische Hilfsmittel des Ingenieurs. New York: Springer Verlag. p. 96.LCCN 67025285.
  • Zwillinger D (1992).Handbook of Integration. Boston, MA: Jones and Bartlett. p. 114.ISBN 0-86720-293-9. Same as Morse & Feshbach (1953), substitutinguk for ξk.
  • Moon P, Spencer DE (1988). "Parabolic-Cylinder Coordinates (μ, ν, z)".Field Theory Handbook, Including Coordinate Systems, Differential Equations, and Their Solutions (corrected 2nd ed., 3rd print ed.). New York: Springer-Verlag. pp. 21–24 (Table 1.04).ISBN 978-0-387-18430-2.

External links

[edit]
Two dimensional
Three dimensional
Retrieved from "https://en.wikipedia.org/w/index.php?title=Parabolic_cylindrical_coordinates&oldid=1316751836"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp