Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Pontecorvo–Maki–Nakagawa–Sakata matrix

From Wikipedia, the free encyclopedia
(Redirected fromPMNS matrix)
Model of neutrino oscillation
Flavour in
particle physics
Flavourquantum numbers
Related quantum numbers
Combinations
Flavour mixing

Inparticle physics, thePontecorvo–Maki–Nakagawa–Sakata matrix (PMNS matrix),Maki–Nakagawa–Sakata matrix (MNS matrix),lepton mixing matrix, orneutrino mixing matrix is aunitary[a]mixing matrix that contains information on the mismatch ofquantum states ofneutrinos when they propagate freely and when they take part inweak interactions. It is a model ofneutrino oscillation. This matrix was introduced in 1962 byZiro Maki,Masami Nakagawa, andShoichi Sakata,[1]to explain the neutrino oscillations predicted byBruno Pontecorvo.[2]

PMNS matrix

[edit]

TheStandard Model of particle physics contains threegenerations or "flavors" of neutrinos,νe{\displaystyle \nu _{\mathrm {e} }},νμ{\displaystyle \nu _{\mu }}, andντ{\displaystyle \nu _{\tau }}, each labeled with a subscript showing the chargedlepton that it partners with in thecharged-current weak interaction. These threeeigenstates of the weak interaction form a complete,orthonormal basis for the Standard Model neutrino. Similarly, one can construct aneigenbasis out of three neutrino states of definite mass,ν1{\displaystyle \nu _{1}},ν2{\displaystyle \nu _{2}}, andν3{\displaystyle \nu _{3}}, which diagonalize the neutrino's free-particleHamiltonian. Observations of neutrino oscillation established experimentally that for neutrinos, as forquarks, these two eigenbases are different – they are 'rotated' relative to each other.

Consequently, each flavor eigenstate can be written as a combination of mass eigenstates, called a "superposition", and vice versa. The PMNS matrix, with componentsUαi{\displaystyle U_{\alpha \,i}} corresponding to the amplitude of mass eigenstatei={\displaystyle i=} 1, 2, 3 in terms of flavorα={\displaystyle \alpha =} "e", "μ", "τ"; parameterizes the unitary transformation between the two bases:

[ νe νμ ντ ]=[ Ue1  Ue2  Ue3 Uμ1 Uμ2  Uμ3 Uτ1  Uτ2  Uτ3][ ν1 ν2 ν3 ] .{\displaystyle {\begin{bmatrix}~\nu _{\mathrm {e} }\\~\nu _{\mu }\\~\nu _{\tau }~\end{bmatrix}}={\begin{bmatrix}~U_{\mathrm {e} 1}~&~U_{\mathrm {e} 2}~&~U_{\mathrm {e} 3}\\~U_{\mu 1}&~U_{\mu 2}~&~U_{\mu 3}\\~U_{\tau 1}~&~U_{\tau 2}~&~U_{\tau 3}\end{bmatrix}}{\begin{bmatrix}~\nu _{1}\\~\nu _{2}\\~\nu _{3}~\end{bmatrix}}~.}

The vector on the left represents a generic neutrino expressed in the flavor-eigenstate basis, and on the right is the PMNS matrix multiplied by a vector representing that same neutrino in the mass-eigenstate basis. A neutrino of a given flavorα{\displaystyle \alpha } is thus a "mixed" state of neutrinos with distinct mass: If one could measure directly that neutrino's mass, it would be found to have massmi{\displaystyle m_{i}} with probability|Uαi|2{\displaystyle \left\vert U_{\alpha \,i}\right\vert ^{2}}.

The PMNS matrix forantineutrinos is identical to the matrix for neutrinos underCPT symmetry.

Due to the difficulties ofdetecting neutrinos, it is much more difficult to determine the individual coefficients than for the equivalent matrix for the quarks (theCKM matrix).

Assumptions

[edit]

Standard Model

[edit]

In the Standard Model, the PMNS matrix isunitary. This implies that the sum of the squares of the values in each row and in each column, which represent the probabilities of different possible events given the same starting point, add up to 100%.

In the simplest case, the Standard Model posits three generations of neutrinos with Dirac mass that oscillate between three neutrino mass eigenvalues, an assumption that is made when best fit values for its parameters are calculated.

Other models

[edit]

In other models the PMNS matrix is not necessarily unitary, and additional parameters are necessary to describe all possible neutrino mixing parameters in other models of neutrino oscillation and mass generation, such as the see-saw model, and in general, in the case of neutrinos that haveMajorana mass rather thanDirac mass.

There are also additional mass parameters and mixing angles in a simple extension of the PMNS matrix in which there are more than three flavors of neutrinos, regardless of the character of neutrino mass. As of July 2014, scientists studying neutrino oscillation are actively considering fits of the experimental neutrino oscillation data to an extended PMNS matrix with a fourth, light "sterile" neutrino and four mass eigenvalues, although the current experimental data tends to disfavor that possibility.[3][4][5]

Parameterization

[edit]

In general, there are nine degrees of freedom in any unitary three by three matrix. However, in the case of the PMNS matrix, five of those real parameters can be absorbed as phases of the lepton fields and thus the PMNS matrix can be fully described by four free parameters.[6]The PMNS matrix is most commonly parameterized by three mixing angles (θ12{\displaystyle \theta _{12}},θ23{\displaystyle \theta _{23}}, andθ13{\displaystyle \theta _{13}}) and a single phase angle calledδCP{\displaystyle \delta _{\mathrm {CP} }} related tocharge–parity violations (i.e. differences in the rates of oscillation between two states with opposite starting points, which makes the order in time in which events take place necessary to predict their oscillation rates), in which case the matrix can be written as:

[1000c23s230s23c23][c130s13eiδCP010s13eiδCP0c13][c12s120s12c120001]=[c12c13s12c13s13eiδCPs12c23c12s23s13eiδCPc12c23s12s23s13eiδCPs23c13s12s23c12c23s13eiδCPc12s23s12c23s13eiδCPc23c13],{\displaystyle {\begin{aligned}&{\begin{bmatrix}1&0&0\\0&c_{23}&s_{23}\\0&-s_{23}&c_{23}\end{bmatrix}}{\begin{bmatrix}c_{13}&0&s_{13}e^{-i\delta _{\mathrm {CP} }}\\0&1&0\\-s_{13}e^{i\delta _{\mathrm {CP} }}&0&c_{13}\end{bmatrix}}{\begin{bmatrix}c_{12}&s_{12}&0\\-s_{12}&c_{12}&0\\0&0&1\end{bmatrix}}\\&={\begin{bmatrix}c_{12}c_{13}&s_{12}c_{13}&s_{13}e^{-i\delta _{\mathrm {CP} }}\\-s_{12}c_{23}-c_{12}s_{23}s_{13}e^{i\delta _{\mathrm {CP} }}&c_{12}c_{23}-s_{12}s_{23}s_{13}e^{i\delta _{\mathrm {CP} }}&s_{23}c_{13}\\s_{12}s_{23}-c_{12}c_{23}s_{13}e^{i\delta _{\mathrm {CP} }}&-c_{12}s_{23}-s_{12}c_{23}s_{13}e^{i\delta _{\mathrm {CP} }}&c_{23}c_{13}\end{bmatrix}},\end{aligned}}}

wheresij{\displaystyle s_{ij}} andcij{\displaystyle c_{ij}} are used to denotesinθij{\displaystyle \sin \theta _{ij}} andcosθij{\displaystyle \cos \theta _{ij}} respectively. In the case of Majorana neutrinos, two extra complex phases are needed, as the phase of Majorana fields cannot be freely redefined due to the conditionν=νc{\displaystyle \nu =\nu ^{c}}. An infinite number of possible parameterizations exist; one other common example being theWolfenstein parameterization.

The mixing angles have been measured by a variety of experiments (seeneutrino mixing for a description). The CP-violating phaseδCP{\displaystyle \delta _{\mathrm {CP} }} has not been measured directly, but estimates can be obtained by fits using the other measurements.

Experimentally measured parameter values

[edit]

As of November 2022, the current best-fit values from Nu-FIT.org, from direct and indirect measurements, using normal ordering, are:[7]For September 2024 data, see NuFIT6[8]

θ12=33.410.72+0.75θ23=49.11.3+1.0θ13=8.540.12+0.11δCP=19725+42{\displaystyle {\begin{aligned}\theta _{12}&={33.41^{\circ }}_{-0.72^{\circ }}^{+0.75^{\circ }}\\\theta _{23}&={49.1^{\circ }}_{-1.3^{\circ }}^{+1.0^{\circ }}\\\theta _{13}&={8.54^{\circ }}_{-0.12^{\circ }}^{+0.11^{\circ }}\\\delta _{\textrm {CP}}&={197^{\circ }}_{-25^{\circ }}^{+42^{\circ }}\\\end{aligned}}}

As of November 2022, the 3 σ ranges (99.7% confidence) for the magnitudes of the elements of the matrix were:[7]|U|=[ |Ue1| |Ue2| |Ue3| |Uμ1| |Uμ2| |Uμ3| |Uτ1| |Uτ2| |Uτ3| ]=[ 0.8030.845  0.5140.578  0.1420.155  0.2330.505  0.4600.693  0.6300.779  0.2620.525  0.4730.702  0.6100.762 ]{\displaystyle |U|={\begin{bmatrix}~|U_{\mathrm {e} 1}|~&|U_{\mathrm {e} 2}|~&|U_{\mathrm {e} 3}|\\~|U_{\mu 1}|~&|U_{\mu 2}|~&|U_{\mu 3}|\\~|U_{\tau 1}|~&|U_{\tau 2}|~&|U_{\tau 3}|~\end{bmatrix}}=\left[{\begin{array}{rrr}~0.803\sim 0.845~~&0.514\sim 0.578~~&0.142\sim 0.155~\\~0.233\sim 0.505~~&0.460\sim 0.693~~&0.630\sim 0.779~\\~0.262\sim 0.525~~&0.473\sim 0.702~~&0.610\sim 0.762~\end{array}}\right]}

Notes regarding the best fit parameter values

See also

[edit]

Notes

[edit]
  1. ^Note however, that the PMNS matrix isnot unitary in theseesaw model.

References

[edit]
  1. ^Maki, Z.; Nakagawa, M.; Sakata, S. (1962)."Remarks on the unified model of elementary particles".Progress of Theoretical Physics.28 (5): 870.Bibcode:1962PThPh..28..870M.doi:10.1143/PTP.28.870.
  2. ^Pontecorvo, B. (1957). "Inverse beta processes and nonconservation of lepton charge".Zhurnal Éksperimental'noĭ i Teoreticheskoĭ Fiziki.34: 247.reproduced and translated inPontecorvo, B. (1958). "[no title cited]".Soviet Physics JETP.7: 172.
  3. ^Kayser, Boris (13 February 2014). "Are there sterile neutrinos?".Dark Matter. AIP Conference Proceedings.1604 (1):201–203.arXiv:1402.3028.Bibcode:2014AIPC.1604..201K.CiteSeerX 10.1.1.761.2915.doi:10.1063/1.4883431.S2CID 119182490.
  4. ^Esmaili, Arman; Kemp, Ernesto; Peres, O.L.G.; Tabrizi, Zahra (30 Oct 2013). "Probing light sterile neutrinos in medium baseline reactor experiments".Physical Review D.88 (7): 073012.arXiv:1308.6218.Bibcode:2013PhRvD..88g3012E.doi:10.1103/PhysRevD.88.073012.S2CID 119208413.
  5. ^An, F.P.; et al. (Daya Bay collaboration) (27 July 2014). "Search for a light sterile neutrino at Daya Bay".Physical Review Letters.113 (14): 141802.arXiv:1407.7259.Bibcode:2014PhRvL.113n1802A.doi:10.1103/PhysRevLett.113.141802.PMID 25325631.S2CID 10500157.
  6. ^Valle, J.W.F. (2006). "Neutrino physics overview".Journal of Physics: Conference Series.53 (1):473–505.arXiv:hep-ph/0608101.Bibcode:2006JPhCS..53..473V.doi:10.1088/1742-6596/53/1/031.S2CID 2094005.
  7. ^abEsteban, Ivan; Gonzalez Garcia, Concha; Maltoni, Michele; Schwetz, Thomas; Albert, Zhou (November 2022)."Parameter ranges".NuFIT.org. Three-neutrino fit (NuFIT 5.2 ed.). Retrieved29 March 2023.
  8. ^Esteban, Ivan; Gonzalez Garcia, Concha; Maltoni, Michele; Martinez-Soler, Ivan; Pinheiro, João Paulo; Schwetz, Thomas (September 2024)."Parameter ranges".NuFIT.org. Three-neutrino fit (NuFIT 6.0 ed.). Retrieved10 December 2024.

Gonzalez-Garcia, M.C.; Maltoni, Michele; Salvado, Jordi; Schwetz, Thomas (21 December 2012). "Global fit to three neutrino mixing: Critical look at present precision".Journal of High Energy Physics.2012 (12): 123.arXiv:1209.3023.Bibcode:2012JHEP...12..123G.CiteSeerX 10.1.1.762.7366.doi:10.1007/JHEP12(2012)123.S2CID 118566415.

Retrieved from "https://en.wikipedia.org/w/index.php?title=Pontecorvo–Maki–Nakagawa–Sakata_matrix&oldid=1267069428"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp