Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Ostrogradsky instability

From Wikipedia, the free encyclopedia
Term in applied mathematics

Inapplied mathematics, theOstrogradsky instability is a feature of some solutions of theories havingequations of motion with more than two timederivatives (higher-derivative theories). It is suggested by a theorem ofMikhail Ostrogradsky inclassical mechanics according to which a non-degenerateLagrangian dependent ontime derivatives higher than the first corresponds to aHamiltonianunbounded from below. As usual, the Hamiltonian is associated with the Lagrangian via aLegendre transform. The Ostrogradsky instability has been proposed as an explanation as to why no differential equations of higher order than two appear to describe physical phenomena.[1]However, Ostrogradsky's theorem does not imply that all solutions of higher-derivative theories are unstable as many counterexamples are known.[2][3][4][5][6][7][8][9][10]

Outline of proof

[edit]

Source:[11]

The main points of the proof can be made clearer by considering a one-dimensional system with a LagrangianL(q,q˙,q¨){\displaystyle L(q,{\dot {q}},{\ddot {q}})}. TheEuler–Lagrange equation is

LqddtLq˙+d2dt2Lq¨=0.{\displaystyle {\frac {\partial L}{\partial q}}-{\frac {d}{dt}}{\frac {\partial L}{\partial {\dot {q}}}}+{\frac {d^{2}}{dt^{2}}}{\frac {\partial L}{\partial {\ddot {q}}}}=0.}

Non-degeneracy ofL{\displaystyle L} means that thecanonical coordinates can be expressed in terms of the derivatives ofq{\displaystyle {q}} and vice versa. Thus,L/q¨{\displaystyle \partial L/\partial {\ddot {q}}} is a function ofq¨{\displaystyle {\ddot {q}}} (if it were not, theJacobiandet[2L/(q¨iq¨j)]{\displaystyle \det[\partial ^{2}L/(\partial {{\ddot {q}}_{i}}\,\partial {\ddot {q}}_{j})]} would vanish, which would mean thatL{\displaystyle L} is degenerate), meaning that we can writeq(4)=F(q,q˙,q¨,q(3)){\displaystyle q^{(4)}=F(q,{\dot {q}},{\ddot {q}},q^{(3)})} or, inverting,q=G(t,q0,q˙0,q¨0,q0(3)){\displaystyle q=G(t,q_{0},{\dot {q}}_{0},{\ddot {q}}_{0},q_{0}^{(3)})}. Since the evolution ofq{\displaystyle q} depends upon four initial parameters, this means that there are four canonical coordinates. We can write those as

Q1:=q{\displaystyle Q_{1}:=q}
Q2:=q˙{\displaystyle Q_{2}:={\dot {q}}}

and by using the definition of the conjugate momentum,

P1:=Lq˙ddtLq¨{\displaystyle P_{1}:={\frac {\partial L}{\partial {\dot {q}}}}-{\frac {d}{dt}}{\frac {\partial L}{\partial {\ddot {q}}}}}
P2:=Lq¨{\displaystyle P_{2}:={\frac {\partial L}{\partial {\ddot {q}}}}}

The above results can be obtained as follows. First, we rewrite the Lagrangian into "ordinary" form by introducing a Lagrangian multiplier as a new dynamic variableλ{\displaystyle \lambda }

L(q,q˙,q¨)L~=L(Q1,Q1˙,Q2˙)λ(Q2Q1˙){\displaystyle L(q,{\dot {q}},{\ddot {q}})\to {\tilde {L}}=L(Q_{1},{\dot {Q_{1}}},{\dot {Q_{2}}})-\lambda (Q_{2}-{\dot {Q_{1}}})},

from which, the Euler-Lagrangian equations forQ1,Q2,λ{\displaystyle Q_{1},Q_{2},\lambda } read

Q1:ddtLQ1˙+λ˙LQ1=0{\displaystyle Q_{1}:{\frac {d}{dt}}{\frac {\partial L}{\partial {\dot {Q_{1}}}}}+{\dot {\lambda }}-{\frac {\partial L}{\partial Q_{1}}}=0},
Q2:ddtLQ2˙+λ=0{\displaystyle Q_{2}:{\frac {d}{dt}}{\frac {\partial L}{\partial {\dot {Q_{2}}}}}+{\lambda }=0},
λ:Q2Q1˙=0{\displaystyle \lambda :Q_{2}-{\dot {Q_{1}}}=0},

Now, the canonical momentumP1,P2{\displaystyle P_{1},P_{2}} with respect toL~{\displaystyle {\tilde {L}}} are readily shown to be

P1=L~Q1˙=LQ1˙+λ=LQ1˙ddtLQ2˙{\displaystyle P_{1}={\frac {\partial {\tilde {L}}}{\partial {\dot {Q_{1}}}}}={\frac {\partial L}{\partial {\dot {Q_{1}}}}}+\lambda ={\frac {\partial L}{\partial {\dot {Q_{1}}}}}-{\frac {d}{dt}}{\frac {\partial L}{\partial {\dot {Q_{2}}}}}}
P2=L~Q2˙=LQ2˙{\displaystyle P_{2}={\frac {\partial {\tilde {L}}}{\partial {\dot {Q_{2}}}}}={\frac {\partial {L}}{\partial {\dot {Q_{2}}}}}}

while

Pλ=0{\displaystyle P_{\lambda }=0}

These are precisely the definitions given above by Ostrogradski.One may proceed further to evaluate the Hamiltonian

H~=P1Q1˙+P2Q2˙+pλλ˙L~=P1Q2+P2Q2˙L{\displaystyle {\tilde {H}}=P_{1}{\dot {Q_{1}}}+P_{2}{\dot {Q_{2}}}+p_{\lambda }{\dot {\lambda }}-{\tilde {L}}=P_{1}Q_{2}+P_{2}{\dot {Q_{2}}}-{L}},

where one makes use of the above Euler-Lagrangian equations for the second equality.We note that due to non-degeneracy, we can writeq¨=Q2˙{\displaystyle {\ddot {q}}={\dot {Q_{2}}}} asa(Q1,Q2,P2){\displaystyle a(Q_{1},Q_{2},P_{2})}. Here, onlythree arguments are needed since the Lagrangian itself only has three free parameters. Therefore, the last expression only depends onP1,P2,Q1,Q2{\displaystyle P_{1},P_{2},Q_{1},Q_{2}}, it effectively serves as the Hamiltonian of theoriginal theory, namely,

H=P1Q2+P2a(Q1,Q2,P2)L(Q1,Q2,P2){\displaystyle H=P_{1}Q_{2}+P_{2}a(Q_{1},Q_{2},P_{2})-L(Q_{1},Q_{2},P_{2})}.

We now notice that the Hamiltonian is linear inP1{\displaystyle P_{1}} and hence unbounded from below. This is a source of the Ostrogradsky instability, and it stems from the fact that the Lagrangian depends on fewer coordinates than there are canonical coordinates (which correspond to the initial parameters needed to specify the problem). The extension to higher dimensional systems is analogous, and the extension to higher derivatives simply means that the phase space is of even higher dimension than the configuration space.

Notes

[edit]
  1. ^Motohashi, Hayato; Suyama, Teruaki (2015). "Third-order equations of motion and the Ostrogradsky instability".Physical Review D.91 (8) 085009.arXiv:1411.3721.Bibcode:2015PhRvD..91h5009M.doi:10.1103/PhysRevD.91.085009.S2CID 118565011.
  2. ^Pais, A.; Uhlenbeck, G. E. (1950). "On Field theories with nonlocalized action".Physical Review.79 (145):145–165.Bibcode:1950PhRv...79..145P.doi:10.1103/PhysRev.79.145.S2CID 123644136.
  3. ^Pagani, E.; Tecchiolli, G.; Zerbini, S. (1987). "On the Problem of Stability for Higher Order Derivatives: Lagrangian Systems".Letters in Mathematical Physics.14 (311):311–319.Bibcode:1987LMaPh..14..311P.doi:10.1007/BF00402140.S2CID 120866609.
  4. ^Smilga, A. V. (2005). "Benign vs. Malicious ghosts in higher-derivative theories".Nuclear Physics B.706 (598):598–614.arXiv:hep-th/0407231.Bibcode:2005NuPhB.706..598S.doi:10.1016/j.nuclphysb.2004.10.037.S2CID 2058604.
  5. ^Pavsic, M. (2013). "Stable Self-Interacting Pais-Uhlenbeck Oscillator".Modern Physics Letters A.28 (1350165).arXiv:1302.5257.Bibcode:2013MPLA...2850165P.doi:10.1142/S0217732313501654.
  6. ^Kaparulin, D. S.; Lyakhovich, S. L.; Sharapov, A. A. (2014)."Classical and quantum stability of higher-derivative dynamics".The European Physical Journal C.74 (3072): 3072.arXiv:1407.8481.Bibcode:2014EPJC...74.3072K.doi:10.1140/epjc/s10052-014-3072-3.S2CID 54059979.
  7. ^Pavsic, M. (2016). "Pais-Uhlenbeck oscillator and negative energies".International Journal of Geometric Methods in Modern Physics.13 (1630015):1630015–1630517.arXiv:1607.06589.Bibcode:2016IJGMM..1330015P.doi:10.1142/S0219887816300154.
  8. ^Smilga, A. V. (2017). "Classical and quantum dynamics of higher-derivative systems".International Journal of Modern Physics A.32 (1730025).arXiv:1710.11538.Bibcode:2017IJMPA..3230025S.doi:10.1142/S0217751X17300253.S2CID 119435244.
  9. ^Salvio, A. (2018)."Quadratic Gravity".Frontiers in Physics.6 (77): 77.arXiv:1804.09944.Bibcode:2018FrP.....6...77S.doi:10.3389/fphy.2018.00077.
  10. ^Salvio, A. (2019). "Metastability in Quadratic Gravity".Physical Review D.99 (10) 103507.arXiv:1902.09557.Bibcode:2019PhRvD..99j3507S.doi:10.1103/PhysRevD.99.103507.S2CID 102354306.
  11. ^Woodard, R.P. (2007). "Avoiding Dark Energy with 1/R Modifications of Gravity".The Invisible Universe: Dark Matter and Dark Energy(PDF). Lecture Notes in Physics. Vol. 720. pp. 403–433.arXiv:astro-ph/0601672.doi:10.1007/978-3-540-71013-4_14.ISBN 978-3-540-71012-7.S2CID 16631993.
Retrieved from "https://en.wikipedia.org/w/index.php?title=Ostrogradsky_instability&oldid=1338111220"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp