Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Orlicz space

From Wikipedia, the free encyclopedia
Type of function space

Inmathematics, and especially inharmonic analysis andfunctional analysis, anOrlicz space is a type of function space which generalizesLp spaces. LikeLp{\displaystyle L^{p}} spaces, they areBanach spaces. The spaces are named forWładysław Orlicz, who was the first to define them in 1932.

BesidesLp{\displaystyle L^{p}} spaces, a variety of function spaces arising naturally in analysis are Orlicz spaces. One such space isLlog+L{\displaystyle L\,\log ^{+}\!L}, which arises in the study ofHardy–Littlewood maximal functions, consisting of measurable functionsf{\displaystyle f} such that

Rn|f(x)|log+|f(x)|dx<.{\displaystyle \int _{\mathbb {R} ^{n}}|f(x)|\log ^{+}|f(x)|\,dx<\infty .}

Herelog+{\displaystyle \log ^{+}} is thepositive part of the logarithm. Also included in the class of Orlicz spaces are many of the most importantSobolev spaces. In addition, theOrlicz sequence spaces are examples of Orlicz spaces.

Terminology

[edit]

These spaces are called Orlicz spaces becauseWładysław Orlicz was the first who introduced them, in 1932.[1] Some mathematicians, including Wojbor Woyczyński,Edwin Hewitt andVladimir Mazya, include the name ofZygmunt Birnbaum as well, referring to his earlier joint work withWładysław Orlicz. However in the Birnbaum–Orlicz paper the Orlicz space is not introduced, neither explicitly nor implicitly, hence the name Orlicz space is preferred. By the same reasons this convention has been also openly criticized by another mathematician (and an expert in the history of Orlicz spaces), Lech Maligranda.[2] Orlicz was confirmed as the person who introduced Orlicz spaces already byStefan Banach in his 1932 monograph.[3]

Definition

[edit]

Letμ{\displaystyle \mu } be aσ-finite measure on a setX{\displaystyle X}, andΦ:[0,)[0,]{\displaystyle \Phi :[0,\infty )\to [0,\infty ]} aYoung function; i.e., aconvex,lower semicontinuous, and non-trivial function. Non-trivial in the sense that it is neither the zero functionx0{\displaystyle x\mapsto 0} nor the convex dual of the zero function

x{0 if x=0,+ otherwise.{\displaystyle x\mapsto {\begin{cases}\,\,\,0&{\text{ if }}x=0,\\+\infty &{\text{ otherwise.}}\end{cases}}}

Now letLΦ{\displaystyle L_{\Phi }^{\dagger }} be the set of measurable functionsf:XR{\displaystyle f:X\to \mathbb {R} } such that the integral

XΦ(|f|)dμ{\displaystyle \int _{X}\Phi (|f|)\,d\mu }

is finite, where, as usual, functions that agreealmost everywhere are identified.

This is not necessarily avector space (for example, it might fail to be closed under scalar multiplication). TheOrlicz space, denotedLΦ{\displaystyle L_{\Phi }}, is the vector space of functions spanned byLΦ{\displaystyle L_{\Phi }^{\dagger }}; that is, the smallest linear space containingLΦ{\displaystyle L_{\Phi }^{\dagger }}. Formally,

LΦ={f|XΦ(k|f|)dμ< for some k>0}.{\displaystyle L_{\Phi }=\left\{f\;{\bigg \vert }\int _{X}\Phi (k|f|)\,d\mu <\infty {\text{ for some }}k>0\right\}.}

There is another Orlicz space, thesmall Orlicz space, defined by

MΦ={f|XΦ(k|f|)dμ< for all k>0}.{\displaystyle M_{\Phi }=\left\{f\;{\bigg \vert }\int _{X}\Phi (k|f|)\,d\mu <\infty {\text{ for all }}k>0\right\}.}

In other words, it is the largest linear space contained inLΦ{\displaystyle L_{\Phi }^{\dagger }}.

Norm

[edit]

To define a norm onLΦ{\displaystyle L_{\Phi }}, letΨ{\displaystyle \Psi } be the complementary Young function toΦ{\displaystyle \Phi }; i.e.,

Ψ(x)=0x(Φ)1(t)dt.{\displaystyle \Psi (x)=\int _{0}^{x}(\Phi ')^{-1}(t)\,dt.}

Note thatYoung's inequality for products holds:

abΦ(a)+Ψ(b).{\displaystyle ab\leq \Phi (a)+\Psi (b).}

The norm is then given by

fΦ=sup{fg1|Ψ(|g|)dμ1}.{\displaystyle \|f\|_{\Phi }=\sup \left\{\|fg\|_{1}\,{\bigg \vert }\int \Psi (|g|)\,d\mu \leq 1\right\}.}

Furthermore, the spaceLΦ{\displaystyle L_{\Phi }} is precisely the space of measurable functions for which this norm is finite.

An equivalent norm,[4]: §3.3  called the Luxemburg norm, is defined onLΦ{\displaystyle L_{\Phi }} by

fΦ=inf{k(0,)|XΦ(|f|/k)dμ1},{\displaystyle \|f\|'_{\Phi }=\inf \left\{k\in (0,\infty )\,{\bigg \vert }\int _{X}\Phi (|f|/k)\,d\mu \leq 1\right\},}

and likewiseLΦ(μ){\displaystyle L_{\Phi }(\mu )} is the space of all measurable functions for which this norm is finite.

The two norms are equivalent in the sense thatfΦfΦ2fΦ{\displaystyle \|f\|_{\Phi }'\leq \|f\|_{\Phi }\leq 2\|f\|_{\Phi }'} for all measurablef{\displaystyle f}.[5]

Note that by themonotone convergence theorem, if0<fΦ<{\displaystyle 0<\|f\|_{\Phi }'<\infty }, then

XΦ(|f|/fΦ)dμ1{\displaystyle \int _{X}\Phi (|f|/\|f\|_{\Phi }')\,d\mu \leq 1}.

Examples

[edit]

For anyp[1,]{\displaystyle p\in [1,\infty ]},Lp{\displaystyle L^{p}} space is an Orlicz space with Orlicz functionΦ(t)=tp{\displaystyle \Phi (t)=t^{p}}. Here

t={0 if t[0,1],+ else.{\displaystyle t^{\infty }={\begin{cases}0&{\text{ if }}t\in [0,1],\\+\infty &{\text{ else.}}\end{cases}}}

When1<p<{\displaystyle 1<p<\infty }, the small and the large Orlicz spaces forΦ(t)=tp{\displaystyle \Phi (t)=t^{p}} are equal:MΦLΦ{\displaystyle M_{\Phi }\simeq L_{\Phi }}.

For an example whereLΦ{\displaystyle L_{\Phi }^{\dagger }} is not a vector space, and is strictly smaller thanLΦ{\displaystyle L_{\Phi }}, letX{\displaystyle X} be the open unit interval(0,1){\displaystyle (0,1)},Φ(t)=et1t{\displaystyle \Phi (t)=e^{t}-1-t}, andf(t)=log(t){\displaystyle f(t)=\log(t)}. Thenaf{\displaystyle af} is in the spaceLΦ{\displaystyle L_{\Phi }} for allaR{\displaystyle a\in \mathbb {R} } but is only inLΦ{\displaystyle L_{\Phi }^{\dagger }} if|a|<1{\displaystyle |a|<1}.

Properties

[edit]

Proposition. The Orlicz norm is anorm.

Proof. SinceΦ(x)>0{\displaystyle \Phi (x)>0} for somex>0{\displaystyle x>0}, we havefΦ=0f=0{\displaystyle \|f\|_{\Phi }=0\to f=0} a.e.. ThatkfΦ=|k|fΦ{\displaystyle \|kf\|_{\Phi }=|k|\|f\|_{\Phi }} is obvious by definition. Fortriangular inequality, we have:XΦ(f+gfΦ+gΦ)dμ=XΦ(fΦfΦ+gΦffΦ+gΦfΦ+gΦggΦ)dμfΦfΦ+gΦXΦ(ffΦ)dμ+gΦfΦ+gΦXΦ(ggΦ)dμ1{\displaystyle {\begin{aligned}&\int _{\mathcal {X}}\Phi \left({\frac {f+g}{\|f\|_{\Phi }+\|g\|_{\Phi }}}\right)d\mu \\=&\int _{\mathcal {X}}\Phi \left({\frac {\|f\|_{\Phi }}{\|f\|_{\Phi }+\|g\|_{\Phi }}}{\frac {f}{\|f\|_{\Phi }}}+{\frac {\|g\|_{\Phi }}{\|f\|_{\Phi }+\|g\|_{\Phi }}}{\frac {g}{\|g\|_{\Phi }}}\right)d\mu \\\leq &{\frac {\|f\|_{\Phi }}{\|f\|_{\Phi }+\|g\|_{\Phi }}}\int _{\mathcal {X}}\Phi \left({\frac {f}{\|f\|_{\Phi }}}\right)d\mu +{\frac {\|g\|_{\Phi }}{\|f\|_{\Phi }+\|g\|_{\Phi }}}\int _{\mathcal {X}}\Phi \left({\frac {g}{\|g\|_{\Phi }}}\right)d\mu \\\leq &1\end{aligned}}}Theorem. The Orlicz spaceLφ(X){\displaystyle L^{\varphi }(X)} is aBanach space — acompletenormedvector space.

Theorem.[5]MΦ,LΦ{\displaystyle M_{\Phi },L_{\Phi ^{*}}} aretopological dual Banach spaces.

In particular, ifMΦ=LΦ{\displaystyle M_{\Phi }=L_{\Phi }}, thenLΦ,LΦ{\displaystyle L_{\Phi ^{*}},L_{\Phi }} are topological dual spaces. In particular,Lp,Lq{\displaystyle L^{p},L^{q}} are dual Banach spaces when1/p+1/q=1{\displaystyle 1/p+1/q=1} and1<p<{\displaystyle 1<p<\infty }.

Relations to Sobolev spaces

[edit]

CertainSobolev spaces are embedded in Orlicz spaces: forn>1{\displaystyle n>1} andXRn{\displaystyle X\subseteq \mathbb {R} ^{n}}open andbounded withLipschitz boundaryX{\displaystyle \partial X}, we have

W01,n(X)Lφ(X){\displaystyle W_{0}^{1,n}(X)\subseteq L^{\varphi }(X)}

for

φ(t):=exp(|t|n/(n1))1.{\displaystyle \varphi (t):=\exp \left(|t|^{n/(n-1)}\right)-1.}

This is the analytical content of theTrudinger inequality: ForXRn{\displaystyle X\subseteq \mathbb {R} ^{n}} open and bounded with Lipschitz boundaryX{\displaystyle \partial X}, consider the spaceW0k,p(X){\displaystyle W_{0}^{k,p}(X)} withkp=n{\displaystyle kp=n} andp>1{\displaystyle p>1}. Then there exist constantsC1,C2>0{\displaystyle C_{1},C_{2}>0} such that

Xexp((|u(x)|C1DkuLp(X))n/(nk))dxC2|X|.{\displaystyle \int _{X}\exp \left(\left({\frac {|u(x)|}{C_{1}\|\mathrm {D} ^{k}u\|_{L^{p}(X)}}}\right)^{n/(n-k)}\right)\,\mathrm {d} x\leq C_{2}|X|.}

Orlicz norm of a random variable

[edit]

Similarly, the Orlicz norm of arandom variable characterizes it as follows:

XΨinf{k(0,)E[Ψ(|X|/k)]1}.{\displaystyle \|X\|_{\Psi }\triangleq \inf \left\{k\in (0,\infty )\mid \operatorname {E} [\Psi (|X|/k)]\leq 1\right\}.}

This norm ishomogeneous and is defined only when this set is non-empty.

WhenΨ(x)=xp{\displaystyle \Psi (x)=x^{p}}, this coincides with thep-thmoment of the random variable. Other special cases in the exponential family are taken with respect to the functionsΨq(x)=exp(xq)1{\displaystyle \Psi _{q}(x)=\exp(x^{q})-1} (forq1{\displaystyle q\geq 1}). A random variable with finiteΨ2{\displaystyle \Psi _{2}} norm is said to be "sub-Gaussian" and a random variable with finiteΨ1{\displaystyle \Psi _{1}} norm is said to be "sub-exponential". Indeed, the boundedness of theΨp{\displaystyle \Psi _{p}} norm characterizes the limiting behavior of the probability distribution function:

XΨp<P(|X|x)KeKxpfor some constants K,K>0,{\displaystyle \|X\|_{\Psi _{p}}<\infty \iff {\mathbb {P}}(|X|\geq x)\leq Ke^{-K'x^{p}}\qquad {\rm {for\ some\ constants\ }}K,K'>0,}

so that the tail of the probability distribution function is bounded above byO(eKxp){\displaystyle O(e^{-K'x^{p}})}.

TheΨ1{\displaystyle \Psi _{1}} norm may be easily computed from a strictly monotonicmoment-generating function. For example, the moment-generating function of achi-squared random variable X with K degrees of freedom isMX(t)=(12t)K/2{\displaystyle M_{X}(t)=(1-2t)^{-K/2}}, so that the reciprocal of theΨ1{\displaystyle \Psi _{1}} norm is related to the functional inverse of the moment-generating function:

XΨ11=MX1(2)=(141/K)/2.{\displaystyle \|X\|_{\Psi _{1}}^{-1}=M_{X}^{-1}(2)=(1-4^{-1/K})/2.}

References

[edit]
  1. ^Über eine gewisse Klasse von Räumen vom Typus B, Bull. Internat. Acad. Polon. Sci. Lett., Class. Sci. Math. Natur.: Sér. A, Sci. Math. 1932:8/9, 207–220.
  2. ^Lech Maligranda,Osiągnięcia polskich matematyków w teorii interpolacji operatorów: 1910–1960, 2015, „Wiadomości matematyczne”, 51, 239-281 (in Polish).
  3. ^Stefan Banach, 1932, Théorie des opérations linéaires, Warszawa (p.202)
  4. ^Rao, M.M.; Ren, Z.D. (1991).Theory of Orlicz Spaces. Pure and Applied Mathematics. Marcel Dekker.ISBN 0-8247-8478-2.
  5. ^abLéonard, Christian. "Orlicz spaces." (2007).

Further reading

[edit]

External links

[edit]
Spaces
Properties
Theorems
Operators
Algebras
Open problems
Applications
Advanced topics
Retrieved from "https://en.wikipedia.org/w/index.php?title=Orlicz_space&oldid=1319524519"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp