
Optical braille recognition is technology to capture and process images ofbraille characters intonatural language characters. It is used to convert braille documents for people who cannot read them into text, and for preservation and reproduction of the documents.
In 1984, a group of researchers at theDelft University of Technology designed a braille reading tablet, in which a reading head with photosensitive cells was moved along set of rulers to capture braille text line-by-line.[1] In 1988, a group of French researchers at theLille University of Science and Technology developed analgorithm, called Lectobraille, which converted braille documents into plain text. The system photographed the braille text with a low-resolutionCCD camera, and usedspatial filtering techniques,median filtering,erosion, anddilation to extract the braille. The braille characters were then converted to natural language usingadaptive recognition.[2] The Lectobraille technique had an error rate of 1%, and took an average processing time of seven seconds per line.[1] In 1993, a group of researchers from theKatholieke Universiteit Leuven developed a system to recognize braille that had been scanned with a commercially availablescanner.[1] The system, however, was unable to handle deformities in the braille grid, so well-formed braille documents were required.[3] In 1999, a group at theHong Kong Polytechnic University implemented an optical braille recognition technique usingedge detection to translate braille into English or Chinese text.[4] In 2001, Murray and Dais created a handheld recognition system, that scanned small sections of a document at once.[5] Because of the small area scanned at once, grid deformation was less of an issue, and a simpler, more efficient algorithm was employed.[3] In 2003, Morgavi and Morando designed a system to recognize braille characters usingartificial neural networks. This system was noted for its ability to handle image degradation more successfully than other approaches.[3]
Many of the challenges to successfully processing braille text arise from the nature of braille documents. Braille is generally printed on solid-color paper, with no ink to produce contrast between the raised characters and the background paper. However, imperfections in the page can appear in a scan or image of the page.
Many documents are printedinter-point, meaning they are double-sided. As such, the depressions of the braille of one side appear interlaid with the protruding braille of the other side.[6]
Some optical braille recognition techniques attempt to useoblique lighting and a camera to reveal the shadows of the depressions and protrusions of the braille. Others make use of commercially available document scanners.[6]